Fast rotation and scale invariant object detection based on ensemble classifier : application to deformable cloth pattern recognition
저자
발행사항
Seoul : Graduate School, Yonsei University, 2015
학위논문사항
학위논문(박사) -- Graduate School, Yonsei University : School of Electrica and Electronic Engineering 2015.2
발행연도
2015
작성언어
영어
주제어
발행국(도시)
서울
기타서명
앙상블 분류기 기반 회전 및 스케일 불변 오브젝트 검출 : 비정형 의류 패턴 인식에 적용
형태사항
x, 117장 : 삽화 ; 26 cm
일반주기명
지도교수: Yoonsik Choe
소장기관
The core of many Computer Vision algorithms is identifying textured patches surrounding the keypoints across images acquired under widely varying poses and lightening conditions. Correspondences generated by the textured patches are very important for object recognition and retrieval applications. Patch recognition using correspondences is very critical step in the whole process, which both reliability and speed are important for the overall performance and usability. Achieving both reliability and speed is difficult because the correspondences can vary depending on pose changes. The standard approach to address this problem is to build affine-invariant descriptors of local image patches and to compare them across images. It results in a high computational overhead.
Random Ferns method based on ensemble classifier that relies on an offline training phase during which multiple views of the patches to be matched has been introduced to train and recognize the correspondences, using some pairwise intensity comparisons. In many object detection problems, run-time performance is very important, so Random Ferns method is more popular. It is very simple to implement, and to perform as well as SIFT while being faster. However, in pre-processing step, too much affine transform processing including Gaussian noise addition and Gaussian smoothing on each patch image has been performed for acquiring independence of pose changes. These processes need too much computation cost so it is very difficult to implement in a commercial market. Also it has another problem that affine transform significantly changes pixel data in the patch window because the pixel data before affine transform are different from those data after affine transform.
A novel technique, therefore, is proposed for addressing fast, efficient, and discriminative detection of correspondences in various imaging conditions in this thesis. Specifically, the rotation invariant HOG based descriptor is proposed for independence on pose changes. And delta-HOG is also proposed, which makes our descriptor to store the HOG in each scale layer and piles it up quickly following scale changes and considering major orientation of descriptor. In addition, the circular patch window is proposed, which can supply the descriptor consistent pixel data whenever the patch window is rotated for detecting objects under pose changes. The circular patch window uses polar coordinates. To speed up the calculation of polar coordinates in the circular patch window, every pixel location and its set of polar parameters (radius and angle from the window center) in the circular patch window is stored in a table in PC memory; therefore, it is simply read through relative addressing using the table without calculating it. The proposed method using these three kinds of methods is fast and shows good performance for the cloth pattern recognition case which is mostly under in-plain rotation and scale changes, not much in 3D pose variation. On the other hand, the entire recognition process with the proposed method using Random Ferns is proposed for deformable cloth pattern recognition and shows good performance, even when cloth patches are rotated and resized.
The proposed method is demonstrated experimentally with city, flower, and museum images where the proposed method takes 24~28 seconds for training while the previous work takes about 2 days which is impossible for internet service applications. The mismatch rate in the city, flower, and museum test images is over 50%, which is relatively very high when considering 10~20% for the previous work, but the experiments using simple images like cloth patch images show similar mismatch rate. In other words, the proposed method shows good performance in deformable cloth pattern recognition experimental results. It found a greater number of similar cloth patches than dense-SIFT in 20 tests out of a total of 36 query tests. In addition, the proposed method is much faster than dense-SIFT in both training and testing; its time consumption is decreased by 57.7% in training and 41.4% in testing, when compared with dense-SIFT on a PC with a Intel Xeon CPU 2GHz and 16GB RAM.
The proposed method, therefore, is expected to contribute to real-time cloth searching service applications that update vast numbers of cloth images posted on the internet .
분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)