KCI등재
머신러닝 분석을 통한 일측성 성대마비 진단 = Prediction of Unilateral Vocal Cord Paralysis Patients Through Machine Learning Analysis of Acoustic Parameters: A Preliminary Study
저자
강승태 (경북대학교 IT대학 전자공학부) ; 박수나 (칠곡경북대학교병원 언어치료실) ; 하지완 (대구대학교 언어치료학과) ; 박기수 (경북대학교 의과대학 신경외과학교실) ; 이지호 (건국대학교 산업공학과) ; 윤장혁 (건국대학교 산업공학과) ; 장길진 (경북대학교 IT대학 전자공학부) ; 이길준 (경북대학교 의과대학 이비인후-두경부외과학교실) 연구자관계분석
발행기관
학술지명
대한후두음성언어의학회지(The Journal of the Korean society of phoniatrics and logotedics )
권호사항
발행연도
2024
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
발행기관 URL
수록면
24-29(6쪽)
DOI식별코드
제공처
Background and Objectives The purpose of this study is to evaluate value of diagnostic tool for vocal cord palsy utilizing artificial intelligence without laryngoscope Materials and Method A dataset consisting of recordings from patients with unilateral vocal cord paralysis (n=54) as well as normal individuals (n=163). The dataset included prolonged pronunciations of the vowels /ah/, /u/, /i/, and vocal cord data from paralyzed patients. Various acoustic parameters such as Mel-frequency cepstral coefficients, jitter, shimmer, harmonics-to-noise ratio, and fundamental frequency statistics were analyzed. The classification of vocal cord paralysis encompassed paralysis status, paralysis degree, and paralysis location. The deep learning model employed the leave-one-out method, and the feature set with the highest performance was selected using the following methods.
Results Vocal Cord Paralysis Classifier: The classifier accurately distinguished normal voice from vocal cord paralysis, achieving an accuracy and F1 score of 1.0. Paralysis Location Classifier: The classifier accurately differentiated between median and paramedian vocal cord paralysis, achieving an accuracy and micro F1 score of 1.0. Breathiness Degree Classifier: The classifier achieved an accuracy of 0.795 and a mean absolute error of 0.2857 in distinguishing different degrees of breathiness.
Conclusion Although the small sample size raises concerns of potential overfitting, this preliminary study highlights distinctive acoustic features in cases of unilateral vocal fold paralysis compared to those of normal individuals. These findings suggest the feasibility of determining the presence, degree, and location of paralysis through the utilization of acoustic parameters. Further research is warranted to validate and expand upon these results.
분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)