KCI등재
가상 데스크톱 환경에서의 기계학습 기반 부트 스톰 완화 시스템
저자
발행기관
학술지명
한국컴퓨터정보학회논문지(Journal of the Korea society of computer and information)
권호사항
발행연도
2024
작성언어
Korean
주제어
KDC
004
등재정보
KCI등재
자료형태
학술저널
발행기관 URL
수록면
1-9(9쪽)
DOI식별코드
제공처
본 연구에서는 부트 스톰을 완화하고 서비스 안정성 향상을 위하여 AI 기반 VDI 사용 예측 시스템, 가상머신 부팅 스케줄러 시스템으로 구성된 부트 스톰 완화 방안인 BRAIDS를 제안한다. 가상 데스크톱 인프라(Virtual Desktop Infrastructure, VDI)는 조직의 업무 생산성 향상과 IT 인프라 효율성 증대를 위한 중요한 기술이다. 다수의 가상 데스크톱이 동시 부팅될 때 발생하는 부트 스톰은 성능저하와 대기 시간 증가를 유발한다. xgboost 알고리즘을 사용하여, 기존 VDI 사용 데이터를 활용하여 향후 VDI 사용량을 예측한다. 또한 예측된 사용량을 입력으로 받아 VDI 서버와 가상머신의 하드웨어 사양을 고려하여 부트 스톰을 정의하고, 부트 스톰을 완화하기 위하여 순차적으로 가상머신을 부팅할 수 있는 스케줄을 제공한다. 사례연구를 통하여 VDI 사용 예측 모델은 높은 예측 정확도와 성능 향상을 보였으며, 가상머신 부팅 스케줄러를 통하여 가상 데스크톱 환경에서의 부트 스톰 현상을 완화하고 효율적으로 IT 인프라를 활용할 수 있음을 확인하였다.
더보기In this paper, we propose BRAIDS, a boot storm mitigation plan consisting of an AI-based VDI usage prediction system and a virtual machine boot scheduler system, to alleviate boot storms and improve service stability. Virtual Desktop Infrastructure (VDI) is an important technology for improving an organizations work productivity and increasing IT infrastructure efficiency. Boot storms that occur when multiple virtual desktops boot simultaneously cause poor performance and increased latency. Using the xgboost algorithm, existing VDI usage data is used to predict future VDI usage. In addition, it receives the predicted usage as input, defines a boot storm considering the hardware specifications of the VDI server and virtual machine, and provides a schedule to sequentially boot virtual machines to alleviate boot storms. Through the case study, the VDI usage prediction model showed high prediction accuracy and performance improvement, and it was confirmed that the boot storm phenomenon in the virtual desktop environment can be alleviated and IT infrastructure can be utilized efficiently through the virtual machine boot scheduler.
더보기분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)