KCI등재
SCOPUS
SCIE
RNA-binding protein expression based machine learning model predicts metastasis and treatment outcome of testicular cancer
저자
Mo Lin-jian (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China) ; Liang Hai-qi (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China) ; Yu Zhen-yuan (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China) ; Liang Yao-wen (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China) ; Gu Chuan-xin (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China) ; Wei Qiu-ju (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China) ; He Qi-huan (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China) ; Wei Fa-ye (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China) ; Cheng Ji-wen (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China) ; Mo Zeng-nan (The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, China)
발행기관
학술지명
권호사항
발행연도
2025
작성언어
English
주제어
등재정보
KCI등재,SCOPUS,SCIE
자료형태
학술저널
발행기관 URL
수록면
741-759(19쪽)
DOI식별코드
제공처
Background RNA-binding proteins (RBPs) are key regulators of cellular transcription and are associated with the occurrence and development of diseases.
Objective This study aimed to validate the biological characteristics and clinical value of RBPs in testicular cancer, and then construct prediction models for testicular cancer metastasis and treatment outcome.
Methods RNA sequencing data from 150 testicular tumors and 6 normal tissues were obtained from the cancer genome atlas (TCGA). Additionally, RNA sequencing data from 165 normal testicular tissues were downloaded from the genotype-tissue expression (GTEx) portal. The chemotherapy sensitivity of testicular tumor was evaluated based on the genomics of drug sensitivity in cancer (GDSC) and cancer therapeutics response portal (CTRP) databases. RNA sequencing data was analyzed and predicted for tumor metastasis and treatment outcomes through machine learning models such as artificial neural networks (ANN), random forests (RF), support vector machines (SVM), and logistic regression models (LR).
Results A RBP risk-score model was developed with the genes: GAPDH, APOBEC3G, KRT18, NOSIP, KCTD12, ENO1, HMGA1, LDHB, ANXA2, ELOVL6, TCF7, BICD1. Those biomarkers were enriched in growth factor activity, hormone receptor binding, and cell killing signaling pathway. Risk-score model can predict the progress free interval (PFI), disease free interval (DFI), and metastasis status of patients with testicular cancer. Patients with high risk-score tumor had an increased tumor infiltrating M2 macrophage, and were more likely to progress after anti-PD-L1 immunotherapy. High risk patients seemed to benifit more from cisplatin-based chemotherapy, but less from bleomycin chemotherapy. Machine learning models basing on RBPs were able to predict tumor metastasis and the effects of chemotherapy and radiotherapy. ANN model achieved the highest accuracy in predicting tumor lymph node metastasis and radiotherapy sensitivity.
Conclusion RBP signature genes can serve as biomarkers for testicular cancer and play a role in predicting tumor metastasis and therapeutic efficacy.
Background RNA-binding proteins (RBPs) are key regulators of cellular transcription and are associated with the occurrence and development of diseases.
Objective This study aimed to validate the biological characteristics and clinical value of RBPs in testicular cancer, and then construct prediction models for testicular cancer metastasis and treatment outcome.
Methods RNA sequencing data from 150 testicular tumors and 6 normal tissues were obtained from the cancer genome atlas (TCGA). Additionally, RNA sequencing data from 165 normal testicular tissues were downloaded from the genotype-tissue expression (GTEx) portal. The chemotherapy sensitivity of testicular tumor was evaluated based on the genomics of drug sensitivity in cancer (GDSC) and cancer therapeutics response portal (CTRP) databases. RNA sequencing data was analyzed and predicted for tumor metastasis and treatment outcomes through machine learning models such as artificial neural networks (ANN), random forests (RF), support vector machines (SVM), and logistic regression models (LR).
Results A RBP risk-score model was developed with the genes: GAPDH, APOBEC3G, KRT18, NOSIP, KCTD12, ENO1, HMGA1, LDHB, ANXA2, ELOVL6, TCF7, BICD1. Those biomarkers were enriched in growth factor activity, hormone receptor binding, and cell killing signaling pathway. Risk-score model can predict the progress free interval (PFI), disease free interval (DFI), and metastasis status of patients with testicular cancer. Patients with high risk-score tumor had an increased tumor infiltrating M2 macrophage, and were more likely to progress after anti-PD-L1 immunotherapy. High risk patients seemed to benifit more from cisplatin-based chemotherapy, but less from bleomycin chemotherapy. Machine learning models basing on RBPs were able to predict tumor metastasis and the effects of chemotherapy and radiotherapy. ANN model achieved the highest accuracy in predicting tumor lymph node metastasis and radiotherapy sensitivity.
Conclusion RBP signature genes can serve as biomarkers for testicular cancer and play a role in predicting tumor metastasis and therapeutic efficacy.
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)