KCI등재
봇 프레임워크를 활용한 챗봇 구현 방안 = Method of ChatBot Implementation Using Bot Framework
저자
김기영 (서일대학교)
발행기관
학술지명
권호사항
발행연도
2022
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
수록면
56-61(6쪽)
KCI 피인용횟수
0
DOI식별코드
제공처
In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.
더보기본 논문에서 챗봇에서 사용하는 AI알고리즘과 자연어처리 방법을 분류하고 제시하고 챗봇 구현에 사용할 수 있는 프레임워크에 대해서도 기술한다. 챗봇은 사용자 인터페이스를 대화방식으로 구성하여 입력된 문자열을 해석하고 입력된 문자열에 적절한 답을 학습된 데이터에서 선택하여 출력하는 구조의 시스템이다. 최근 콜센터와 주문 업무에 적용하여 인건비를 감소하고 정확한 업무를 할 수 있는 장점이 있다. 하지만 질문에 대한 적정한 답변 집합을 생성하기 위해 학습이 필요하며 이를 위해 상당한 계산 기능을 갖는 하드웨어가 필요하다. 개발을 하는 업체는 물론 AI분야 개발을 학습하는 학생들의 실습은 한계가 있다. 현재 챗봇은 기존의 전통적인 업무를 대체하고 있으며 시스템을 이해하고 구현하는 실습과정이 필요한 실정이다. 정형화되어 있는 데이터에 대해서만 응답을 하는 수준을 넘어 딥러닝 등의 기술을 적용하여 비정형 데이터를 학습시켜 질문에 대한 응답의 정확성을 높이기 위해 RNN과 Char-CNN 등을 사용해야한다. 챗봇을 구현하기 위해서는 이와 같은 이론을 이해하고 있어야한다. 본 논문에서는 단기간에 챗봇 코딩교육에 활용할 수 있는 방안과 기존 개발자, 학생들이 챗봇 구현을 할 수 있는 플랫폼을 활용하여 학생들이 전체시스템을 구현 예를 제시하였다.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
2017-01-01 | 평가 | 등재학술지 선정 (계속평가) | KCI등재 |
2016-01-01 | 평가 | 등재후보학술지 유지 (계속평가) | KCI후보 |
2014-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.32 | 0.32 | 0 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0 | 0 | 0 | 0.1 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)