KCI등재
입력변수 구성에 따른 총유기탄소(TOC) 예측 머신러닝 모형의 성능 비교 = Comparison of the Performance of Machine Learning Models for TOC Prediction Based on Input Variable Composition
저자
발행기관
학술지명
유기물자원화(Jornal of Korea Organic Resource Recycling Association)
권호사항
발행연도
2024
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
수록면
19-29(11쪽)
DOI식별코드
제공처
총 유기 탄소 (total organic carbon, TOC)는 물에 포함된 유기 탄소의 총량을 나타내며 BOD, COD와 함께수중의 유기물질량에 대한 정량적인 지표로 활용되는 대표적인 수질 항목이다. 본 연구에서는 대표적인 앙상블(ensemble) 머신러닝 알고리즘의 하나인 XGBoost (XGB)를 이용하여 TOC를 예측하는 모형을 구축하였다. 모형의구축을 위한 독립변수로는 수온, pH, 전기전도도, 용존 산소 농도, 생물화학적 산소요구량, 화학적 산소요구량, 부유물질, 총질소, 총인 및 유량을 활용하였다. 또한 모형의 구축에 활용된 다양한 수질 항목의 영향에 대한 정량적인분석을 위해 입력변수의 feature importance를 산정하였으며, 이를 기반으로 변수중요도에 따라 중요도가 낮은 항목을 순차적으로 제외하여 모형의 성능 변화를 분석하였다. 변수중요도가 낮은 항목을 순차적으로 제외하여 구축한모형의 성능은 RSR (root mean squared error-observation standard deviation ratio) 0.53~0.55의 범위를 보였으며, 전체입력변수를 적용한 모형의 RSR 값은 0.53로 가장 우수한 성능을 보이는 것으로 분석되었다. 또한 모형의 현장적용성을 높이기 위해 현장 측정이 상대적으로 용이한 측정항목을 중심으로 모형을 구축하고 성능을 분석하였다. 분석결과 상대적으로 측정이 용이한 항목인 수온, pH, 전기전도도, 용존산소농도, 부유물질농도만으로 구축된 모형의경우에도 RSR 값이 0.72로 분석되어 상대적으로 측정이 용이한 현장 수질측정항목만을 이용하는 경우에도 안정적인성능의 확보가 가능할 수 있음을 확인하였다.
더보기Total organic carbon (TOC) represents the total amount of organic carbon contained in water and is a key water quality parameter used, along with biochemical oxygen demand (BOD) and chemical oxygen demand (COD), to quantify the amount of organic matter in water. In this study, a model to predict TOC was developed using XGBoost (XGB), a representative ensemble machine learning algorithm. Independent variables for model construction included water temperature, pH, electrical conductivity, dissolved oxygen concentration, BOD, COD, suspended solids, total nitrogen, total phosphorus, and discharge. To quantitatively analyze the impact of various water quality parameters used in model construction, the feature importance of input variables was calculated. Based on the results of feature importance analysis, items with low importance were sequentially excluded to observe changes in model performance. When built by sequentially excluding items with low importance, the performance of the model showed a root mean squared error-observation standard deviation ratio (RSR) range of 0.53 to 0.55. The model that applied all input variables showed the best performance with an RSR value of 0.53. To enhance the model's field applicability, models using relatively easily measurable parameters were also built, and the performance changes were analyzed. The results showed that a model constructed using only the relatively easily measurable parameters of water temperature, electrical conductivity, pH, dissolved oxygen concentration, and suspended solids had an RSR of 0.72. This indicates that stable performance can be achieved using relatively easily measurable field water quality parameters.
더보기분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)