KCI등재
목적지향 대화시스템에서 LSTM 언어모델 기반의 한국어 자연어 생성 = Korean Natural Language Generation Using LSTM-based Language Model forTask-Oriented Spoken Dialogue System
저자
발행기관
학술지명
한국차세대컴퓨팅학회 논문지(The Journal of Korean Institute of Next Generation Computing)
권호사항
발행연도
2020
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
수록면
35-50(16쪽)
KCI 피인용횟수
1
제공처
Natural language generation in the dialogue system is a task that transforms the semantic frame of the system utterance determined in the dialogue management phase into a natural language that can be understood by humans. Existing studies have still faced some obstacles in that only very limited types of utterances or grammatically incomplete ones are generated from the semantic frames. In order to address these issues simultaneously, we propose a Korean natural language generation model using a long short term memory based language model. In particular, we exploit the beam search decoding method to obtain system utterances with diverse structures and grammatical correctness. The experiments were conducted individually with respect to the word, morpheme, and syllable units, and the generated utterances were evaluated in both quantitative and qualitative ways. As a result, the morpheme-based model with the beam search decoding has achieved the most robust result of all. In fact, in the quantitative evaluation result of the generated sentence, the BLEU-4 score was 0.86 and the SER was 0.03, and the qualitative evaluation was also confirmed to be grammatically correct and contextually natural.
더보기대화시스템에서 자연어 생성은 대화관리 단계에서 결정한 시스템 발화의 의미표현을 사람이 이해할 수 있는 자연어로 생성하는 것이다. 기존의 자연어 생성 연구는 의미표현에 대하여 매우 제한된 종류의 발화만을 생성하거나 문법적으로 불완전한 발화를 생성한다는 문제점이 있다. 그래서 본 논문에서는 문제점들을 동시에 처리하기 위하여 Long Short Term Memory 기반의 언어모델을 이용한 한국어 자연어 생성 모델을 제안한다. 특히 우리는 시스템 발화의 다양성과 문법적 정확성을 높이기 위하여 빔서치 디코딩을 적용한다. 실험은 어절, 형태소, 음절단위에 따라 개별적으로 진행하였으며, 생성한 문장들은 정량적, 정성적 평가를 모두 진행하였다. 그 결과 형태소 단위로 학습한 제안모델에 빔서치 디코딩을 적용한 방법은 가장 좋은 성능을 보였다. 실제로 해당 생성 문장은 정량평가 결과에서 BLEU 지표는 0.86, Slot Error Rate 지표는 0.03을 기록하였으며 정성평가 역시 문법적으로 정확하고 문맥적으로 충분히 자연스러운 결과임을 확인하였다.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2027 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2021-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
2018-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2015-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2011-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
2010-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | KCI후보 |
2008-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.68 | 0.68 | 0.62 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.56 | 0.51 | 0.557 | 0.26 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)