Unfolding some numerical solutions for the magnetohydrodynamics Casson–Williamson nanofluid flow over a stretching surface
저자
Khan Kashif Ali (-) ; Vivas-Cortez Miguel (-) ; Ahammad N Ameer (-) ; Bushra Hafiza (-) ; Gamaoun Fehmi (-) ; Javed Muhammad Faraz (-) ; Raza Nauman (-)
발행기관
학술지명
Journal of computational design and engineering(Journal of Computational Design and Engineering)
권호사항
발행연도
2024
작성언어
English
주제어
자료형태
학술저널
수록면
1-11(11쪽)
DOI식별코드
제공처
This research focuses on exploring the significance of chemical reactions and thermal radiation on the magnetohydrodynamic (MHD) flow of a Casson–Williamson nanofluid (CWNF) over a stretching sheet. The objective is to comprehend how these factors influence the flow and heat transfer. A mathematical model, comprising partial differential equations adjusted into ordinary differential equations (ODEs) via utilizing some transformation. These ODEs are then tackled by MATLAB’s BVP4C method, which is part of the finite difference technique. Results are verified by comparison with existing literature and are depicted visually and in tabular format. Additionally, the study explores the effects of external factors such as magnetic fields and the Lewis number on parameters like Nusselt number, friction factor, and Sherwood number. Furthermore, heat generation in MHD CWNF is analyzed, along with a thorough evaluation of heat transfer near a stretching sheet with a permeable layer. The findings suggest that growing Brownian motion factor (Nb) and thermophoresis coefficient (Nt) enhance the rate of heat transfer, signifying improved heat transfer rates. Similarly, higher Nt values are associated with enhanced Sherwood numbers, indicating better mass transfer. Conversely, higher Nb values lead in lower local Sherwood numbers. Physically, an increase in Brownian motion causes significant displacement of nanofluid particles, boosting their kinetic energy and thereby enhancing heat generation within the boundary layer. It is noted that the Eckert number (Ec) reflects the impact of different Ec values on temperature distribution. As Ec increases, there is a proportional increase in fluid temperature due to frictional heating, which stores heat energy within the fluid. This effect becomes more pronounced for non-linear stretching surfaces, demonstrating the response of the thermal region to viscous dissipation. Viscous dissipation has the potential to enhance convective heat transfer, leading to amplified temperature distribution and thickening of the thermal layer.
더보기분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)