KCI등재
SCOPUS
주파수 변이를 이용한 Parallel Model Combination 모델 적응에 기반한 잡음에 강한 음성인식 = Noise Robust Speech Recognition Based on Parallel Model Combination Adaptation Using Frequency-Variant
저자
최숙남 (영남대학교 정보통신공학과) ; 정현열 (영남대학교) ; Choi, Sook-Nam ; Chung, Hyun-Yeol
발행기관
학술지명
권호사항
발행연도
2013
작성언어
Korean
주제어
등재정보
KCI등재,SCOPUS,ESCI
자료형태
학술저널
발행기관 URL
수록면
252-261(10쪽)
KCI 피인용횟수
1
DOI식별코드
제공처
일반적인 음성인식 시스템은 조용한 인식 환경에서는 높은 인식성능을 나타내지만 잡음이 존재하는 실제 환경에서는 그 성능이 급격히 저하한다. 본 논문에서는 다양한 잡음환경에서도 강인한 음성인식기를 구현하기 위하여, 주파수의 변이도를 이용하여 음성인식을 위한 환경 정보를 얻고 이를 음성 인식을 위한 모델 개선에 적용하여 성능향상을 도모하는 환경정보 지식에 기반한 주파수 변이 적응 PMC (Parallel Model Combination adaptation using frequency-variant based on environment - awareness : FV-PMC) 방법을 제안한다. 이 방법은 미리 분류된 각 잡음 군간의 평균 주파수 변이도를 미리 계산하여 임계치로 설정하고 미지의 잡음이 포함된 음성이 입력되면 각 잡음 군과의 주파수 변이도를 다시 계산하여 해당 잡음군의 임계치 보다 높을 경우 그 잡음 군의 잡음이 포함된 음성으로 간주하여 이 잡음 군이 포함된 음성을 이용하여 생성된 인식모델을 이용하여 음성인식을 수행한다. 제안한 FV-PMC 방법을 이용하여 잡음을 분류 하였을 경우 평균 분류 정확도는 56%를 보였고 이를 이용해 음성인식 실험을 실시한 결과 Set A의 평균인식률은 79.05%, Set B의 평균인식률은 79.43%, Set C의 평균인식률은 83.37%로 나타났다. 전체 평균인식률 80.62%로 기존의 깨끗한 모델을 이용한 PMC 인식률 74.93% 보다 5.69% 향상된 결과를 보여 제안한 방법의 유효성을 확인할 수 있었다.
더보기The common speech recognition system displays higher recognition performance in a quiet environment, while its performance declines sharply in a real environment where there are noises. To implement a speech recognizer that is robust in different speech settings, this study suggests the method of Parallel Model Combination adaptation using frequency-variant based on environment-awareness (FV-PMC), which uses variants in frequency; acquires the environmental data for speech recognition; applies it to upgrading the speech recognition model; and promotes its performance enhancement. This FV-PMC performs the speech recognition with the recognition model which is generated as followings: i) calculating the average frequency variant in advance among the readily-classified noise groups and setting it as a threshold value; ii) recalculating the frequency variant among noise groups when speech with unknown noises are input; iii) regarding the speech higher than the threshold value of the relevant group as the speech including the noise of its group; and iv) using the speech that includes this noise group. When noises were classified with the proposed FV-PMC, the average accuracy of classification was 56%, and the results from the speech recognition experiments showed the average recognition rate of Set A was 79.05%, the rate of Set B 79.43%m, and the rate of Set C 83.37% respectively. The grand mean of recognition rate was 80.62%, which demonstrates 5.69% more improved effects than the recognition rate of 74.93% of the existing Parallel Model Combination with a clear model, meaning that the proposed method is effective.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | KCI등재 |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2006-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2004-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2001-07-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
1999-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.23 | 0.23 | 0.22 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.2 | 0.18 | 0.398 | 0.07 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)