KCI등재
소셜 네트워크에서 감정단어의 단계별 코사인 유사도 기법을 이용한 추천시스템 = Personalized Recommendation System using Level of Cosine Similarity of Emotion Word from Social Network
This paper proposes a system which recommends movies using information from social network services containing personal interest and taste. Method for establishing data is as follows.
The system gathers movies’ information from web sites and user’s information from social network services such as Facebook and twitter. The data from social network services is categorized into six steps of emotion level for more accurate processing following users’ emotional states. Gathered data will be established into vector space model which is ideal for analyzing and deducing the information with the system which is suggested in this paper. The existing similarity measurement method for movie recommendation is presentation of vector information about emotion level and similarity measuring method on the coordinates using Cosine measure. The deducing method suggested in this paper is two-phase arithmetic operation as follows. First, using general cosine measurement, the system establishes movies list. Second, using similarity measurement, system decides recommendable movie list by vector operation from the coordinates. After Comparative Experimental Study on the previous recommendation systems and new one , it turned out the new system from this study is more helpful than existing systems.
본 논문에서는 개인의 취향과 관심이 반영 되어있는 소셜 정보를 활용하여 사용자에게 영화를 추천할 수 있는 시스템을 제안하였다. 시스템에서 데이터 구축은 포털사이트에서 영화 정보를 수집하고 페이스북과 트위터 같은 SNS를 통해 소셜 정보를 수집한다. 본 논문에서는 사용자의 감정에 따른 보다 정교한 처리를 위하여 6단계의 감정단계로 분류한 소셜 정보의 벡터공간 모형의 구축방법을 제안한다. 추천을 위한 유사도 측도 방법은 2단계로 구성되어 있다. 첫 번째는 일반적인 코사인 측도를통한 영화 목록의 구축 단계이고, 두 번째는 기존의 코사인 측도(Cosine measure)를 활용한 좌표평면에서 감정 단계별 벡터 정보 표현 방법 및 유사도 측도 방법을 통해 추천 영화 목록의 결정 단계이다. 본 논문의 추천 시스템의 성능을 평가하기 위하여 기존의 추천 시스템과 비교 실험을 통하여 본 연구의 추천 시스템의 유용성을 검증하였다.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 선정 (재인증) | KCI등재 |
2019-12-01 | 평가 | 등재후보로 하락 (계속평가) | KCI후보 |
2016-02-29 | 학회명변경 | 한글명 : 한국ITA학회 -> 한국엔터프라이즈아키텍처학회영문명 : Korea Institute of information technology Architecture -> Korea Institute of Enterprise Architecture | KCI등재 |
2016-01-01 | 평가 | 등재학술지 유지 (계속평가) | KCI등재 |
2016-01-01 | 학술지명변경 | 한글명 : 정보기술아키텍처 연구 -> 정보화연구 | KCI등재 |
2012-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
2011-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | KCI후보 |
2010-01-01 | 평가 | 등재후보 1차 FAIL (등재후보1차) | KCI후보 |
2008-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.68 | 0.68 | 0.61 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.56 | 0.5 | 0.571 | 0.26 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)