KCI등재
생성적 적대 신경망을 활용한 부분 위변조 이미지 생성에 관한 연구 = A Study on Image Creation and Modification Techniques Using Generative Adversarial Neural Networks
저자
송성헌(Seong-Heon Song) ; 최봉준(Bong-Jun Choi) ; 문미경(M-Ikyeong Moon)
발행기관
학술지명
한국전자통신학회 논문지(The Journal of The Korea Institute of Electronic Communication Sciences)
권호사항
발행연도
2022
작성언어
-주제어
KDC
567
등재정보
KCI등재
자료형태
학술저널
수록면
291-297(7쪽)
DOI식별코드
제공처
생성적 적대 신경망(Generative Adversarial Networks, GAN)은 내부의 두 신경망(생성망, 판별망)이 상호 경쟁하면서 학습하는 네트워크이다. 생성자는 현실과 가까운 이미지를 만들고, 구분자는 생성자의 이미지를 더 잘 감별하도록 프로그래밍 되어있다. 이 기술은 전체 이미지 X를 다른 이미지 Y로 생성, 변환 및 복원하기 위해 다양하게 활용되고 있다. 본 논문에서는 원본 이미지에서 부분 이미지만 추출한 후, 이를 자연스럽게 다른 객체로 위변조할 수 있는 방법에 관해 기술한다. 먼저 원본 이미지에서 부분 이미지만 추출한 후, 기존에 학습시켜놓은 DCGAN 모델을 통해 새로운 이미지를 생성하고, 이를 전체적 스타일 전이(overall style transfer) 기술을 사용하여 원본 이미지의 질감과 크기에 어울리도록 리스타일링(re-styling) 한 후, 원본 이미지에 자연스럽게 결합하는 과정을 거친다. 본 연구를 통해 원본 이미지의 특정 부분에 사용자가 원하는 객체 이미지를 자연스럽게 추가/변형할 수 있음으로써 가짜 이미지 생성의 또 다른 활용 분야로 사용될 수 있을 것이다.
더보기A generative adversarial network (GAN) is a network in which two internal neural networks (generative network and discriminant network) learn while competing with each other. The generator creates an image close to reality, and the delimiter is programmed to better discriminate the image of the constructor. This technology is being used in various ways to create, transform, and restore the entire image X into another image Y. This paper describes a method that can be forged into another object naturally, after extracting only a partial image from the original image. First, a new image is created through the previously trained DCGAN model, after extracting only a partial image from the original image. The original image goes through a process of naturally combining with, after re-styling it to match the texture and size of the original image using the overall style transfer technique. Through this study, the user can naturally add/transform the desired object image to a specific part of the original image, so it can be used as another field of application for creating fake images.
더보기서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)