KCI등재
악성 안드로이드 앱 탐지를 위한 개선된 특성 선택 모델 = Advanced Feature Selection Method on Android Malware Detection by Machine Learning
저자
발행기관
학술지명
정보보호학회논문지(Journal of The Korea Institute of Information Security and Cryptology)
권호사항
발행연도
2020
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
발행기관 URL
수록면
357-367(11쪽)
KCI 피인용횟수
0
DOI식별코드
제공처
소장기관
According to Symantec's 2018 internet security threat report, The number of new mobile malware variants increased by54 percent in 2017, as compared to 2016. And last year, there were an average of 24,000 malicious mobile applicationsblocked each day. Existing signature-based technologies of malware detection have limitations. So, malware detectiontechnique through machine learning is being researched to detect malware variant. However, even in the case of applyingmachine learning, if the proper features of the malware are not properly selected, the machine learning cannot be showncorrectly. We are focusing on feature selection method to find the features of malware variant in this research.
더보기2018년 시만텍 보고서에 따르면, 모바일 환경에서 변종 악성 앱은 전년도 대비 54% 증가하였고, 매일 24,000개의 악성 앱이 차단되고 있다. 최근 연구에서는 기존 악성 앱 분석 기술의 사용 한계를 파악하고, 신ㆍ변종 악성앱을 탐지하기 위하여 기계학습을 통한 악성 앱 탐지 기법이 연구되고 있다. 하지만, 기계학습을 적용하는 경우에도악성 앱의 특성을 적절하게 선택하여 학습하지 못하면 올바른 결과를 보일 수 없다. 본 연구에서는 신ㆍ변종 악성앱의 특성을 찾아낼 수 있도록 개선된 특성 선택 방법을 적용하여 학습 모델의 정확도를 최고 98%까지 확인할 수있었다. 향후 연구를 통하여 정밀도, 재현율 등 특정 지표의 향상을 목표로 할 수 있다.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | KCI등재 |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2008-01-01 | 평가 | 등재 1차 FAIL (등재유지) | KCI등재 |
2005-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
2004-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | KCI후보 |
2003-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.41 | 0.41 | 0.43 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.45 | 0.4 | 0.508 | 0.04 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)