KCI등재
타각적 굴절검사값을 기반으로 최적의 안경처방 머신러닝 알고리즘 개발 = Development of a Machine Learning Algorithm for Optimum Eyeglasses Prescription Based on Objective Refraction
목적 : 4차 산업혁명이 진행됨에 따라 타각적 굴절검사값, 수차 및 동공크기 등을 이용하여 최적의 안경처방값을 도출해주는 머신러닝(machine learning)을 개발하고자 하였다.
방법: 시력에 영향을 줄 수 있는 안질환 및 전신질환이 없고 안구 수술 이력이 없는 근시안(1,000안)을 대상으로진행하였다. I-Profilerplus(Zeiss, Berlin, Germany)를 사용하여 타각적 굴절이상도(objective-refraction) 및안구수차(ocular wavefront-aberration), 동공 크기를 측정하였고, 자각적 굴절이상도(subjective-refraction)는Visuphor500(Zeiss, Berlin, Germany)를 사용하여 구면 굴절력(S, Diopter), 원주 굴절력(C, Diopter), 난시축(Ax, °)을 측정하였다. 측정 후, 파이썬(Python, version 3.10)을 이용하여 머신러닝 모델 생성 및 예측 성능을확인하였다.
결과: 자각적 굴절이상도에서 구면 굴절력에 영향을 미치는 요인은 타각적 구면 굴절력, defocus aberration, spherical aberration, trefoil aberration 순으로 높았고, 원주 굴절력에 영향을 미치는 요인은 타각적 원주 굴절력, defocus aberration, coma aberration, trefoil aberration 순으로 높았으며, 난시 축은 타각적 난시축만영향을 미치는 것으로 나타났다. 구면 굴절력, 원주 굴절력, 난시 축의 자각적 굴절이상도와 머신러닝 예상값은차이가 없는 것으로 나타났다(p=0.976, 0.948, and 0.349, respectively).
결론 : 자각적 굴절이상도를 예측하는 머신러닝 모델을 생성하였고, 해당 모델의 예측된 값과 자각적 굴절이상도와 유의한 차이가 없는 것을 통해 예측 정확도를 확인하였으며 앞으로 개인 맞춤형 처방을 위한 정확한 안경처방값을 도출하는데 기초자료가 될 수 있을 것으로 생각된다.
Purpose : As the Fourth Industrial Revolution progresses, to develop machine learning to draw subjective prescription values by using objective refraction, ocular aberrations, and pupil size.
Methods : Myopic subjects (1000 eyes) with no ocular or systemic diseases that could affect vision and no history of ocular surgery were participated. I-Profilerplus (Zeiss, Berlin, Germany) was used to measure objective refraction, ocular wavefront-aberration, and pupil size. For subjective-refraction, spherical refraction (S, diopters), astigmatic refraction (C, diopters), and astigmatic axis (Ax, °) were measured using a Visuphor500 (Zeiss, Berlin, Germany). After the measurements, the machine learning model was developed using Python (version 3.10) and checked its prediction performance.
Results : In the subjective refraction, the factors affecting the spherical refractive power were the highest in the order of objective spherical refractive errors, defocus aberration, spherical aberration, and trefoil aberration had the highest impact on spherical refractive power, while objective cylindrical refractive errors, defocus aberration, coma aberration, and trefoil aberration had the highest impact on cylindrical refractive power. However, the astigmatic axis was affected only by objective astigmatic axis. There was no difference between subjective refractive errors and machine learning predicted refractive errors for spherical refraction, cylindrical refraction, and astigmatic axis(p=0.976, 0.948, and 0.349, respectively).
Conclusion : A machine learning model that predicts the subjective refractive errors was developed, and the prediction accuracy was confirmed through there was no significant difference between the predicted refractive errors and the subjective refractive errors.
Therefore, it is thought that it can be used as basic data to derive accurate eyeglass prescription for personalized prescriptions in the future.
분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
한국교육학술정보원은 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
제1조(개인정보의 처리 목적)
제2조(개인정보의 처리 및 보유 기간)
제3조(처리하는 개인정보의 항목)
제4조(개인정보파일 등록 현황)
제5조(개인정보의 제3자 제공)
제6조(개인정보 처리업무의 위탁)
제7조(개인정보의 파기 절차 및 방법)
제8조(정보주체와 법정대리인의 권리·의무 및 그 행사 방법)
제9조(개인정보의 안전성 확보조치)
제10조(개인정보 자동 수집 장치의 설치·운영 및 거부)
제11조(개인정보 보호책임자)
제12조(개인정보의 열람청구를 접수·처리하는 부서)
제13조(정보주체의 권익침해에 대한 구제방법)
제14조(추가적 이용·제공 판단기준)
제15조(개인정보 처리방침의 변경)
제1조(개인정보의 처리 목적)
제2조(개인정보의 처리 및 보유 기간)
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)
제3조(처리하는 개인정보의 항목)
제4조(개인정보파일 등록 현황)
| 개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 |
보유기간 | |
|---|---|---|---|---|
| 학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
| 선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 | |||
제5조(개인정보의 제3자 제공)
제6조(개인정보 처리업무의 위탁)
제7조(개인정보의 파기 절차 및 방법)
제8조(정보주체와 법정대리인의 권리·의무 및 그 행사 방법)
제9조(개인정보의 안전성 확보조치)
제10조(개인정보 자동 수집 장치의 설치·운영 및 거부)
제11조(개인정보 보호책임자)
| 구분 | 담당자 | 연락처 |
|---|---|---|
| KERIS 개인정보 보호책임자 | 정보보호본부 김태우 |
- 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
| KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
| RISS 개인정보 보호책임자 | 학술데이터본부 정광훈 |
- 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
| RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
제12조(개인정보의 열람청구를 접수·처리하는 부서)
제13조(정보주체의 권익침해에 대한 구제방법)
제14조(추가적인 이용ㆍ제공 판단기준)
제15조(개인정보 처리방침의 변경)
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)