KCI등재
인공신경망 기법을 이용한 청미천 유역 Flux tower 결측치 보정 = A point-scale gap filling of the flux-tower data using the artificial neural network
In this study, we estimated missing evapotranspiration (ET) data at a eddy-covariance flux tower in the Cheongmicheon farmland site using the Artificial Neural Network (ANN). The ANN showed excellent performance in numerical analysis and is expanding in various fields. To evaluate the performance the ANN-based gap-filling, ET was calculated using the existing gap-filling methods of Mean Diagnostic Variation (MDV) and Food and Aggregation Organization Penman-Monteith (FAO-PM). Then ET was evaluated by time series method and statistical analysis (coefficient of determination, index of agreement (IOA), root mean squared error (RMSE) and mean absolute error (MAE). For the validation of each gap-filling model, we used 30 minutes of data in 2015. Of the 121 missing values, the ANN method showed the best performance by supplementing 70, 53 and 84 missing values, respectively, in the order of MDV, FAO-PM, and ANN methods. Analysis of the coefficient of determination (MDV, FAO-PM, and ANN methods followed by 0.673, 0.784, and 0.841, respectively.) and the IOA (The MDV, FAO-PM, and ANN methods followed by 0.899, 0.890, and 0.951 respectively.) indicated that, all three methods were highly correlated and considered to be fully utilized, and among them, ANN models showed the highest performance and suitability. Based on this study, it could be used more appropriately in the study of gap-filling method of flux tower data using machine learning method.
더보기본 연구에서는 청미천 유역에서의 플럭스타워에서 산출되는 증발산량의 결측값을 보완하기 위해 인공신경망(Artificial Neural Network, ANN)을 사용하였다. 비교 평가를 위해, Mean Diurnal Variation(MDV), Food and Agriculture Organization Penman-Monteith(FAO-PM) 방법들을 이용하여 증발산량을 산정하였고, ANN 방법을 이용한 결과와 비교하였다. 비교 평가 방법으로 시계열 방법 및 통계 분석(결정계수, IOA, RMSE, MAE)이 사용되었다. 각 gap-filling 모델의 검증을 위해 2015년의 30분 단위 데이터를 이용하였으며, 121개의 결측값 중 MDV, FAO-PM, ANN 방법 순으로 각각 70, 53, 54개의 결측값을 보완하여 모든 데이터가 관측되지 않은 36개의 데이터를 제외하면 각각 82.4%, 62.4%, 63.5%의 성능을 보였다. 결정계수(MDV, FAO-PM, ANN 방법 순으로 각각 0.673, 0.784, 0.841)와 IOA(MDV, FAO-PM, ANN 방법 순으로 각각 0.899, 0.890, 0.951)를 분석한 결과, 3가지 방법 모두 양질의 상관성을 보여 활용성이 충분하다고 판단되며, 이 중 ANN 모델이 가장 높은 적합도와 양질의 성능을 나타내었다. 본 연구를 기반으로 기계학습방법을 이용한 플럭스 타워 자료의 gap-filing 연구에 보다 적절하게 활용될 수 있을 것이다.
더보기분석정보
| 연월일 | 이력구분 | 이력상세 | 등재구분 |
|---|---|---|---|
| 2027 | 평가예정 | 재인증평가 신청대상 (재인증) | |
| 2021-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
| 2018-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
| 2015-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
| 2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
| 2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
| 2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
| 2005-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
| 2002-07-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
| 2000-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
| 기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
|---|---|---|---|
| 2016 | 0.5 | 0.5 | 0.57 |
| KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
| 0.55 | 0.54 | 0.781 | 0.22 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
한국교육학술정보원은 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
제1조(개인정보의 처리 목적)
제2조(개인정보의 처리 및 보유 기간)
제3조(처리하는 개인정보의 항목)
제4조(개인정보파일 등록 현황)
제5조(개인정보의 제3자 제공)
제6조(개인정보 처리업무의 위탁)
제7조(개인정보의 파기 절차 및 방법)
제8조(정보주체와 법정대리인의 권리·의무 및 그 행사 방법)
제9조(개인정보의 안전성 확보조치)
제10조(개인정보 자동 수집 장치의 설치·운영 및 거부)
제11조(개인정보 보호책임자)
제12조(개인정보의 열람청구를 접수·처리하는 부서)
제13조(정보주체의 권익침해에 대한 구제방법)
제14조(추가적 이용·제공 판단기준)
제15조(개인정보 처리방침의 변경)
제1조(개인정보의 처리 목적)
제2조(개인정보의 처리 및 보유 기간)
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)
제3조(처리하는 개인정보의 항목)
제4조(개인정보파일 등록 현황)
| 개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 |
보유기간 | |
|---|---|---|---|---|
| 학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
| 선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 | |||
제5조(개인정보의 제3자 제공)
제6조(개인정보 처리업무의 위탁)
제7조(개인정보의 파기 절차 및 방법)
제8조(정보주체와 법정대리인의 권리·의무 및 그 행사 방법)
제9조(개인정보의 안전성 확보조치)
제10조(개인정보 자동 수집 장치의 설치·운영 및 거부)
제11조(개인정보 보호책임자)
| 구분 | 담당자 | 연락처 |
|---|---|---|
| KERIS 개인정보 보호책임자 | 정보보호본부 김태우 |
- 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
| KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
| RISS 개인정보 보호책임자 | 학술데이터본부 정광훈 |
- 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
| RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
제12조(개인정보의 열람청구를 접수·처리하는 부서)
제13조(정보주체의 권익침해에 대한 구제방법)
제14조(추가적인 이용ㆍ제공 판단기준)
제15조(개인정보 처리방침의 변경)
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)