KCI등재
도로위험도를 평가하는 요구/노력모형의 신뢰도 향상을 위한 신경망 모형 개발 = The Development of Neural Network Model to Improve the Reliability of the Demand/Effort Model for Evaluating Highway Safety
저자
발행기관
학술지명
권호사항
발행연도
2009
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
발행기관 URL
수록면
95-105(11쪽)
KCI 피인용횟수
1
제공처
소장기관
Traffic accidents on highways are likely to happen when there is an imbalance in the complex relationships among key elements such as road geometries, driver related factors, and mechanical performances. The Demand-Effort Model (DEM), which evaluates highway safety, can be explained by the imbalance, which occurs when the level of demand of the driver’s attention to the road environment exceeds that of the response from the driver. This study suggests a new model that improves the reliability of the current DEM through the reinterpretation on the physiological signals with the help of the Neural Network Model (NNM). The data were collected from 149 subjects, who drove a test vehicle on the Yongdong, Honam, and Seohaean Expressways in Korea. Three important results could be drawn from the recursive tests as follows; ① Only 5 out of 10 parameters on the physiological signals which are currently used were proven to be meaningful through the Normality Test, Cluster Analysis, and Mann-Whitney Analysis. ② The revised DEM, which internally uses the NNM, showed more reliable results than existing DEM. Group 1, which is based on the new DEM showed 80.0% of accuracy in measuring the level of driver’s efforts, however, that of Group 2 based on the current DEM was 74.3%. ③ Field tests on the Honam Expressway showed lower ‘type II error’ with the new DEM (40.5%) than the old DEM (58.8%). The DEM is designed as a quick and easy way to determine highway safety prior to the minute road safety audit (RSA) by a professional audit team. Then a new DEM, which is based on the NNM, needs to be considered since it showed higher reliability and lower error.
더보기도로환경요인과 운전자의 능력의 부조화상태에서 교통사고 위험성이 높아진다는 개념으로부터 도로위험수준을 평가를 하고자 하는 것이 요구-노력모형이다. 본 연구에서는 요구-노력모형의 노력수준을 결정하는 운전자 생체신호의 재분석을 통하여 요구-노력모형의 신뢰성을 높일 수 있는 새로운 신경망 모형구조를 제안하였다. 영동, 호남 및 서해안고속도로에서 149명의 피실험자를 대상으로 검증한 연구결과는 다음과 같이 나타났다. 첫째, 생체신호 파라메타 값에 대하여 Normality Test, Cluster Analysis와 Mann-Whitney 분석에서 기존 요구-노력 모형에서 사용하던 10개의 생체신호 중 5개의 생체신호만이 통계적으로 유의함을 입증하였다. 둘째, 신경망모형은 운전자의 노력수준의 평가에 대한 정확도는 매우 높게 나타났다. 신경망구축을 위해 사용한 집단1의 피실험자별 전체 노력수준의 정확도는 80.0%, 집단 2의 피실험자별 전체 노력수준의 정확도가 74.3%로 나타났다. 셋째, 요구-노력모형에서 노력수준 경계값 결정방법에 따라 호남고속도로 전주IC→회덕JCT구간의 단위분석지점에 대하여 도로위험도를 판별한 결과, 2종 오류가 신경망모형 40.5%, 기존 모형 58.8%로 나타났다. 요구-노력모형에 의한 도로위험도 평가가 최종적이기 보다는 전문가 그룹에 의한 상세한 도로안전진단에 앞서 도로위험도를 대략적으로 판별하고자 하는 의도였다고 한다면 보다 많은 검토대상구간을 판별하고, 더 낮은 2종 오류비율을 보인 신경망을 이용한 방법이 요구-노력모형의 취지에 적합하다고 볼 수 있다.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2022 | 평가예정 | 계속평가 신청대상 (등재유지) | |
2017-01-01 | 평가 | 우수등재학술지 선정 (계속평가) | |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2006-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2004-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2001-07-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
1999-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.43 | 0.43 | 0.46 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.46 | 0.43 | 0.762 | 0.2 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)