KCI등재
SCIE
SCOPUS
Multivariate model predictive control study of large scale PWR nuclear power plant based on the asymptotic method
저자
Wang Wentao (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, And Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi’an Jiaotong University) ; Mo Jinhong (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, And Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi’an Jiaotong University) ; Sun Peiwei (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, And Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi’an Jiaotong University) ; Wei Xinyu (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, And Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi’an Jiaotong University)
발행기관
학술지명
Nuclear Engineering and Technology(Nuclear Engineering and Technology)
권호사항
발행연도
2025
작성언어
English
주제어
등재정보
KCI등재,SCIE,SCOPUS
자료형태
학술저널
발행기관 URL
수록면
-
DOI식별코드
제공처
Third-generation PWR nuclear power plants face increased grid peaking tasks, demanding enhanced load following capabilities of the reactor control system. The MPC algorithm, owing to its advantage, more effectively addresses grid peaking challenges. Therefore, a model predictive control algorithm based on the asymptotic method is utilized to research advanced control of PWR models. Initially, the paper conducts identification experiments based on asymptotic identification method and the characteristics of PWR. A reduced-order model is derived from a higher-order model based on identification data and objective function minimization. Model order selection is guided by the asymptotic criterion. The identified model demonstrates good performance in the frequency domain according to the model validation theory of asymptotic method. In time domain validation, the error percentage of the model output is low and the step response exhibits correct direction. Subsequently, a model predictive controller is designed based on the identification model, and simulation analysis is conducted for four working conditions respectively. Under load step conditions, the MPC controller markedly reduced both regulation time and steady-state error compared to the original controller, achieving a complete elimination of steady-state error and over 75 % reduction in regulation time for average coolant temperature control.
Concurrently, under conditions of load ramping, the MPC controller achieved a significant reduction of over 99 % in the ITSE as compared to the original controller. However, it should be noted that the output frequency and intensity are higher for MPC controller compared to the original controller
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)