KCI등재
빅데이터 시대의 개인정보 과잉이 사용자 저항에 미치는 영향
저자
이환수(Hwansoo Lee) ; 임동원(Dongwon Lim) ; 조항정(Hangjung Zo) 연구자관계분석
발행기관
학술지명
권호사항
발행연도
2013
작성언어
Korean
주제어
KDC
003
등재정보
KCI등재
자료형태
학술저널
발행기관 URL
수록면
125-139(15쪽)
KCI 피인용횟수
48
DOI식별코드
제공처
Big data refers to the data that cannot be processes with conventional contemporary data technologies. As smart devices and social network services produces vast amount of data, big data attracts much attention from researchers. There are strong demands form governments and industries for bib data as it can create new values by drawing business insights from data. Since various new technologies to process big data introduced, academic communities also show much interest to the big data domain.
A notable advance related to the big data technology has been in various fields. Big data technology makes it possible to access, collect, and save individual’s personal data. These technologies enable the analysis of huge amounts of data with lower cost and less time, which is impossible to achieve with traditional methods. It even detects personal information that people do not want to open. Therefore, people using information technology such as the Internet or online services have some level of privacy concerns, and such feelings can hinder continued use of information systems. For example, SNS offers various benefits, but users are sometimes highly exposed to privacy intrusions because they write too much personal information on it. Even though users post their personal information on the Internet by themselves, the data sometimes is not under control of the users. Once the private data is posed on the Internet, it can be transferred to anywhere by a few clicks, and can be abused to create fake identity. In this way, privacy intrusion happens.
This study aims to investigate how perceived personal information overload in SNS affects user’s risk perception and information privacy concerns. Also, it examines the relationship between the concerns and user resistance behavior. A survey approach and structural equation modeling method are employed for data collection and analysis. This study contributes meaningful insights for academic researchers and policy makers who are planning to develop guidelines for privacy protection. The study shows that information overload on the social network services can bring the significant increase of users’ perceived level of privacy risks. In turn, the perceived privacy risks leads to the increased level of privacy concerns. IF privacy concerns increase, it can affect users to from a negative or resistant attitude toward system use. The resistance attitude may lead users to discontinue the use of social network services. Furthermore, information overload is mediated by perceived risks to affect privacy concerns rather than has direct influence on perceived risk. It implies that resistance to the system use can be diminished by reducing perceived risks of users. Given that users’ resistant behavior become salient when they have high privacy concerns, the measures to alleviate users’ privacy concerns should be conceived.
This study makes academic contribution of integrating traditional information overload theory and user resistance theory to investigate perceived privacy concerns in current IS contexts. There is little big data research which examined the technology with empirical and behavioral approach, as the research topic has just emerged. It also makes practical contributions. Information overload connects to the increased level of perceived privacy risks, and discontinued use of the information system. To keep users from departing the system, organizations should develop a system in which private data is controlled and managed with ease. This study suggests that actions to lower the level of perceived risks and privacy concerns should be taken for information systems continuance.
분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2027 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2021-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
2018-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2015-03-25 | 학회명변경 | 영문명 : 미등록 -> Korea Intelligent Information Systems Society | KCI등재 |
2015-03-17 | 학술지명변경 | 외국어명 : 미등록 -> Journal of Intelligence and Information Systems | KCI등재 |
2015-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2008-02-11 | 학술지명변경 | 한글명 : 한국지능정보시스템학회 논문지 -> 지능정보연구 | KCI등재 |
2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2004-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
2003-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | KCI후보 |
2001-07-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 1.51 | 1.51 | 1.99 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
1.78 | 1.54 | 2.674 | 0.38 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)