무엇을 찾고 계세요?

인기검색어

    Mechanical Exfoliation of 2D-Materials and Formation of Nanocomposites with Transition Metal Compounds by Vacuum Kinetic Spray Process for Energy Conversion and Sensing Applications = Mechanical Exfoliation of 2D-Materials and Formation of Nanocomposites with Transition Metal Compounds by Vacuum Kinetic Spray Process for Energy Conversion and Sensing Applications

    • 내보내기
    • 내책장담기
      • URL 복사
    • 오류접수

    The wide spreading of using two dimensional (2D) materials (i.e., graphene, MoS2, and Boron nitride) and their hybrid nanocomposites (NCs) with functional semiconductor compounds in electrochemical applications related to energy conversion, energy storage, and non-enzymatic sensing applications require a cost-effective technique that is amenable to large size production. This goal cannot be simply achieved because there is no single system for the fabrication of 2D materials and their hybrid NCs in one process. The top-down approaches based on the mechanical exfoliation of layered materials are commonly used for the mass production of pure 2D materials. The conventional methods for layered materials exfoliations through the mechanical approach are ball milling (wet or dry) and sonochemical techniques. In these techniques, the pure 2D materials were prepared in successive steps for a very long time. Also, these techniques require solvents with suitable surface energy that match with the type of the layered material to facilitate the stacked layers' exfoliation. The use of chemicals and solvents require further cleaning from waste product and the product only in the powder form. This requires hard labor work and increases the fabrication cost. Furthermore, the fabrication of 2D-materials hybrid NCs with a functional nanosized semiconductor cannot be achieved in one process, in which the pure 2D materials and the nanosized semiconductor materials are prepared individually. Then, both materials were mixed by chemical approach to form interfacial bonding between them. This would further increase the fabrication time consumption and reduce the overall cost efficiency.
    The dry spray coating based on the vacuum kinetic spray process was utilized for the direct deposition of nanosized thin films in one step from the corresponding micron powder at room temperature without any chemical treatment. There is various low-temperature dry manufacturing process such as cold spray, aerosol deposition (AD), as well as the nanoparticle deposition system (NPDS). The main difference between these techniques is the optimized pressure range for micron powder feeding as well as deposition pressure. The cold spray and AD techniques have similar system configurations of particle deposition but have some limitations on particle size range and type, which strongly affect the ability of deposition. As an example, the cold spray technique is mostly used for the deposition of metallic powder whereas the AD technique is frequently used for ceramic films. This indicated the limitation of deposition of metal/ceramics composites by these techniques. In contrast, the NPDS system has the optimum pressure range for deposition of either nano-sized ceramics or metallic as well as their hybrid NCs thin films at room temperature in one step. Furthermore, the graphene thin films were successfully deposited by the NPDS in one step on various substrate types. The kinetic induced transformation of graphite-staked layers to graphene nanosheets in one step by the NPDS at room temperature was explained in terms of the mechanical exfoliation of graphite stacked layers at impact velocity higher than a critical value. This would provide a new route for layered materials mechanical exfoliation based on the vacuum kinetic spray process that differs from the conventional technique that follows either sonochemical or ball milling approaches
    The ability of graphite stacked layers separation by the NPDS in one step motivated us to examine the ability of mechanical exfoliation of other graphene-like materials (i.e., layered materials) with a similar hexagonal structure such as molybdenum disulfide (MoS2) and boron nitride (BN) by the NPDS without the need of any chemical assistance. Hence, we could use the NPDS as a single system for the mechanical exfoliation for various layered materials. Moreover, the NPDS was used to fabricate graphene-based hybrid NCs with various functional nanosized semiconductors. So, we investigated the ability of hybrid NCs formation with another graphene-like material especially MoS2 to demonstrate the benefit of using the NPDS system as a single system for layered materials exfoliation and formation of hybrid NCs with other functional materials, which reduce the fabrication time and consequently enhance the fabrication cost efficiency.
    To improve the charge transfer kinetics at the electrode/electrolyte interface in the electrochemical energy applications the 2D-nanomaterials (NMs) like graphene and MoS2 nanosheets are commonly used. The hybridization between the 2D-NMs and the other functional nano-sized semiconductor would result in the improvement of overall activity toward various electrochemical applications. Optimization of modified electrode performance is strongly dependent on the composition constituent at the heterostructure interfaces. This indicates the need to study the effect of the composition ratio between the 2D NMs and the other functional materials on the electrochemical performance of the fabricated electrodes.
    The main objectives of this study are classified into three main parts:
    First, we want to provide a new mechanical approach for pure layered materials exfoliation using the NPDS according to the vacuum kinetic spray process. This was achieved by studying the mechanical exfoliation of various layered materials with a similar hexagonal phase such as graphite, MoS2, and BN using the same deposition condition by the NPDS. This indicated the applicability of NPDS as a single and solvent-free system for layered materials exfoliation.
    Second, we fabricated various graphene-based hybrid NCs with various transition metals (TMs) compounds (i.e., Ni(OH)2, Co3O4, Mn3O4, and ZnO) by the NPDS at room temperature in a one-step process on various substrate type (i.e., porous nickel foam and flat titanium sheet). All fabricated electrodes revealed the successful exfoliation of graphite stacked layers to graphene nanosheets in one step as well as the strong synergy improvement between the formed graphene nanosheets and the TMs species. The observed synergy improvement resulted in the activity enhancement toward water splitting-based energy conversion and non-enzymatic H2O2 detection applications. The catalytic activity of TMs-graphene hybrid NCs towards the water splitting through various routes including electrocatalytic, photocatalytic, and photo-electrocatalytic as well as and non-enzymatic H2O2 sensing was found to be strongly dependent on the initial ratio of TMs: graphite mixture, in which the optimum combination was estimated for each application.
    Third, we fabricated various MoS2-based hybrid NCs with spinel transition metals (TMs) compounds (i.e., Co3O4 and Mn3O4) by the NPDS at room temperature in a one-step process on various substrate type (i.e., porous nickel foam and flat titanium sheet). All fabricated electrodes revealed the successful exfoliation of MoS2 stacked layers to small MoS2 nanosheets and strong synergy improvement between the formed MoS2 nanosheets and the spinel TMs species. The observed synergy improvement resulted in the activity enhancement toward water splitting-based energy conversion and non-enzymatic H2O2 sensing applications. The catalytic activity of TMs-MoS2 hybrid NCs towards the electrocatalytic water splitting and non-enzymatic H2O2 sensing was found to be strongly dependent on the initial ratio of TMs: MoS2 mixture, in which the optimum combination was estimated for each application.
    The obtained results indicated that the NPDS technique is an efficient and eco-friendly technique for layered materials exfoliation and fabrication of hybrid NCs with high efficiency in various energy and sensing applications in one deposition step at room temperature in a short fabrication time. This indicated the improvement of fabrication cost efficiency compared with other conventional processes.

    더보기
    • Contents
    • Abstract I
    • Contents IV
    • List of Figures: IX
    • List of Tables: XXII
    • List of Abbreviations XXV
    • Chapter 1: Introduction 27
    • 1. 1. 2D NMs properties 28
    • 1. 2. 2D NMs synthetic approaches 29
    • 1. 2. 1. The bottom-up synthetic approach of 2D NMs 29
    • 1. 2. 2. The top-down synthetic approach of 2D NMs 29
    • 1. 3. Formation of TMs-based hybrid NCs with 2D NMs 37
    • 1. 4. Vacuum kinetic spray process for NMs deposition 38
    • 1. 5. Research goals and objectives 40
    • 1. 6. Thesis Organization 41
    • Chapter 2: Experimental Conditions 45
    • 2. 1. Materials 46
    • 2. 1. 1. Layered materials 46
    • 2. 1. 2. Transition metals compounds 46
    • 2. 1. 3. Substrate 46
    • 2. 1. 4. Electrolytes and solvents 46
    • 2. 2. Fabrication of nano-sized thin films by the NPDS 47
    • 2. 3. Surface Characterization techniques 50
    • 2. 4. Electrochemical measurements 51
    • 2. 4. 1. Electrocatalytic water splitting 51
    • 2. 4. 2. PEC water splitting 52
    • 2. 4. 3. H2O2 sensing 53
    • Chapter 3: 54
    • One-Step Mechanical Exfoliation and Deposition of Nanosheets of Layered Materials by a Room Temperature Vacuum Kinetic Spray Process 54
    • 3. 1. Overview 55
    • 3. 2. Mechanism of 2D materials exfoliation and deposition 56
    • 3. 3. Results and discussion 58
    • 3. 3. 1. X-ray diffraction 58
    • 3. 3. 2. Morphological analysis of the layered materials powder and deposited thin films 63
    • 3. 3. 3. Raman studies 64
    • 3. 4. Summary 69
    • Chapter 4: 71
    • Composition Dependent Electrocatalytic Activity of Ni(OH)2-Graphene Hybrid Catalyst Deposited by One-Step Vacuum Kinetic Spray Technique 71
    • 4. 1. Overview 72
    • 4. 2. Results and discussion 74
    • 4. 2. 1. Structural analysis of the Ni(OH)2-graphene composites 74
    • 4. 2. 2. Raman spectra of the Ni(OH)2-graphene composites 76
    • 4. 2. 3. Surface analysis of the Ni(OH)2-graphene composite/Ni foam thin films 79
    • 4. 2. 4. Morphological and elemental analysis of the Ni(OH)2-graphene composites 83
    • 4. 2. 5. Electrochemical characterization 88
    • 4. 3. Summary 98
    • Chapter 5: 99
    • Fabrication of Efficient Nanostructured Co3O4-Graphene Bifunctional Catalysts: Oxygen Evolution, Hydrogen Evolution, and H2O2 Sensing 99
    • 5.1. Overview 100
    • 5.2. Results and discussion 103
    • 5. 2. 1. XRD analysis of Co3O4-graphene composites 103
    • 5. 2. 2. Raman studies on Co3O4-graphene composites 106
    • 5. 2. 3. Surface Morphology and composition analysis of Co3O4-graphene composites 111
    • 5. 2. 4. XPS analysis of the Co3O4-graphene composites thin films 120
    • 5. 2. 5. Electrochemical active surface area 127
    • 5. 2. 6. Oxygen evolution reaction activity of Co3O4-graphene hybrid catalysts 128
    • 5. 2. 7. Hydrogen evolution activity of Co3O4-graphene hybrid catalysts 131
    • 5. 2. 8. H2O2 electrochemical sensing by Co3O4-graphene hybrid catalysts 132
    • 5.3. Summary 136
    • Chapter 6: 138
    • Facile One-Step Deposition of ZnO-Graphene Nanosheets Hybrid Photoanodes for Enhanced Photoelectrochemical Water Splitting 138
    • 6. 1. Overview 139
    • 6. 2. Results and discussion 142
    • 6. 2. 1. X-ray diffraction analysis of ZnO-graphene composites 142
    • 6. 2. 2. Surface morphology of ZnO-graphene composites 143
    • 6. 2. 3. FTIR and Raman studies on ZnO-graphene composites 150
    • 6. 2. 4. Surface bonding characterization of ZnO-graphene NCs 155
    • 6. 2. 5. The optical band gap of ZnO-graphene nanosheets photoanodes 162
    • 6. 2. 6. Photoluminescence studies on ZnO-graphene nanosheets hybrid photoanodes 164
    • 6. 2. 7. Photoelectrochemical water splitting measurements 165
    • 6. 3. Summary 170
    • Chapter 7: 172
    • Room-Temperature Deposition of ZnO-Graphene Nanocomposite Hybrid Photocatalysts for Improved Visible-Light-Driven Degradation of Methylene Blue 172
    • 7.1. Overview 173
    • 7.2. Results and Discussion 176
    • 7. 2. 1. XRD patterns of ZnO-graphene NCs hybrid photocatalysts 176
    • 7. 2. 2. Raman studies on ZnO-graphene NCs 177
    • 7. 2. 3. Surface morphology of ZnO-graphene nanocomposites photocatalysts 180
    • 7. 2. 4. Investigation of the surface bonding states on ZnO-graphene NCs/NF hybrid photocatalysts. 187
    • 7. 2. 5. The optical band gap of ZnO-graphene NCs/NF hybrid photocatalysts 191
    • 7. 2. 6. Photocatalytic activity of ZnO-graphene nanocomposite photocatalysts 193
    • 7.3. Summary 197
    • Chapter 8: 199
    • Nanosized Co3O4-MoS2 Heterostructure Electrodes for Improving the Oxygen Evolution Reaction in an Alkaline Medium 199
    • 8.1. Overview 200
    • 8.2. Results and discussion 202
    • 8. 2. 1. XRD patterns of Co3O4-MoS2 composites 202
    • 8. 2. 2. Raman spectra of Co3O4-MoS2 composites 204
    • 8. 2. 3. Morphology investigation of Co3O4-MoS2 composites 208
    • 8. 2. 4. Surface bonding states of Co3O4-MoS2 hybrid electrocatalysts 219
    • 8. 2. 5. Electrochemical active surface area 224
    • 8. 2. 6. Electrocatalytic activity of Co3O4-MoS2 heterogeneous electrodes 225
    • 8.3. Summary 228
    • Chapter 9: 229
    • Facile One-step Deposition of Co3O4-MoS2 Nanocomposites using a Vacuum Kinetic Spray Process for Non-Enzymatic H2O2 Sensing 229
    • 9.1. Overview 230
    • 9.2. Results and Discussion 231
    • 9. 2. 1. XRD analysis of Co3O4-MoS2 composites 231
    • 9. 2. 2. Surface morphology of Co3O4-MoS2 composites 233
    • 9. 2. 3. Raman studies on Co3O4-MoS2 heterostructure composites 243
    • 9. 2. 4. XPS studies on Co3O4-MoS2 nanostructure composites 248
    • 9. 2. 5. Electrocatalytic active surface area evaluation 254
    • 9. 2. 6. Electrocatalytic activity of Co3O4-MoS2 NCs toward H2O2 oxidation 255
    • 9.3. Summary 262
    • Chapter 10: 264
    • Heterostructured Mn3O4-2D Materials Nanosheets: One-Step Vacuum Kinetic Spray Deposition and Non-Enzymatic H2O2 Sensing 264
    • 10. 1. Overview 265
    • 10. 2. Results and Discussion 267
    • 10. 2. 1. XRD analysis of Mn3O4-2D-layered materials composites 267
    • 10. 2. 2. Investigation of the surface structural phase of Mn3O4-2D materials hybrid composites 270
    • 10. 2. 3. Surface morphology of Mn3O4-2D materials composites 274
    • 10. 2. 4. XPS studies on Mn3O4-2D materials composites 279
    • 10. 2. 5. Electrocatalytic activity of Mn3O4-2D materials toward H2O2 reduction 286
    • 10. 3. Summary 290
    • Chapter 11: Conclusions 292
    • References 297
    더보기
    • 1 Papyrin , A. , et al., "Cold spray technology", Elsevier, 2006
    • 2 Pakdel , A.Y. BandoD. Golberg, "Nano boron nitride flatland", Chem Soc Rev43 ( 3 ) : p. 934-59, 2014
    • 3 Novoselov , K.S. , et al., "Two-dimensional atomic crystals", Proc Natl Acad Sci U S A102 ( 30 ) : p. 10451- 3, 2005
    • 4 429 . StankovichS. , et al., "Graphene-based composite materials", Nature442 ( 7100 ) : p. 282-6, 2006
    • 5 Ramakrishna MatteH. , et al., "MoS2 and WS2 analogues of graphene", Angewandte Chemie International Edition49 ( 24 ) : p. 4059-4062, 2010
    • 6 Elton , L.D.F . Jackson, "X-ray diffraction and the bragg law", American Journal of Physics34 ( 11 ) : p. 1036-1038, 1966
    • 7 282 . DahalM. Batzill, "Graphene-nickel interfaces : a review", Nanoscale6 ( 5 ) : p. 2548-62, 2014
    • 8 121 . ChenC. Wang, "J.Second order Raman spectrum of MoS2", Solid State Communications14 ( 9 ) : p. 857-860, 1974
    • 9 259 . BuzagloM. , et al., "Graphite-to-Graphene : Total Conversion", Adv Mater29 ( 8 ) : p. 1603528, 2017
    • 10 425 . AllenM.J.V.C . TungR.B . Kaner, "Honeycomb carbon : a review of graphene", Chem Rev110 ( 1 ) : p. 132-45, 2010
    • 11 349 . LiQ. , et al., "CdS/Graphene Nanocomposite Photocatalysts", Advanced Energy Materials5 ( 14 ) : p. 1500010, 2015
    • 12 186 . VilekarS.A.I. FishtikR. Datta, "Kinetics of the Hydrogen Electrode Reaction", Journal of the Electrochemical Society157 ( 7 ) : p. B1040-B1050, 2010
    • 13 Zheng , C.N. , et al., "The art of two-dimensional soft nanomaterials", Science China-Chemistry62 ( 9 ) : p. 1145-1193, 2019
    • 14 Schneemann , A. , et al., "2D framework materials for energy applications", Chemical Science2021 . 12 ( 5 ) : p. 1600-1619, null
    • 15 Jawaid , A. , et al., "Mechanism for Liquid Phase Exfoliation of MoS2", Chemistry of Materials28 ( 1 ) : p. 337-348, 2016
    • 16 332 . Willardson, "R.K. and A.C. BeerSemiconductors and semimetals", Academic press, 1977
    • 17 305 . DasJ. , et al., "Micro-Raman and XPS studies of pure ZnO ceramics", Physica B-Condensed Matter405 ( 10 ) : p. 2492-2497, 2010
    • 18 293 . ArguelloC. , D.L . RousseauS.d.S . Porto, "First-order Raman effect in wurtzite-type crystals", Physical Review181 ( 3 ) : p. 1351, 1969
    • 19 173 . CornilsenB.C. , P.J . KarjalaP.L . Loyselle, "Structural Models for Nickel Electrode Active Mass", Journal of Power Sources22 ( 3-4 ) : p. 351-357, 1988
    • 20 291 . Calleja, "J. and M. Cardona , Resonant raman scattering in ZnO", Physical Review B16 ( 8 ) : p. 3753, 1977
    • 21 Yao , Y.G. , et al., "Large-scale production of two-dimensional nanosheets", Journal of Materials Chemistry22 ( 27 ) : p. 13494-13499, 2012
    • 22 419 . YangR. , et al., "MnO2 -Based Materials for Environmental Applications", Adv Mater2021 . 33 ( 9 ) : p. e2004862, null
    • 23 Yi , M. , et al., "Water can stably disperse liquid-exfoliated graphene", Chemical Communications49 ( 94 ) : p. 11059-11061, 2013
    • 24 Novoselov , K.S. , et al., "Electric field effect in atomically thin carbon films", Science306 ( 5696 ) : p. 666- 9, 2004
    • 25 Rout , C.S.D. LateH. Morgan, "Fundamentals and sensing applications of 2D materials", Woodhead Publishing, 2019
    • 26 Kim , H.J.C.H . LeeS.Y . Hwang, "Fabrication of WC-Co coatings by cold spray deposition", Surface & Coatings Technology191 ( 2-3 ) : p. 335-340, 2005
    • 27 351 . WilliamsG.B. SegerP.V . KamatTiO2-graphene nanocomposites, "UV-assisted photocatalytic reduction of graphene oxide", ACS Nano2 ( 7 ) : p. 1487-91, 2008
    • 28 Buzaglo , M. , et al., "Critical parameters in exfoliating graphite into graphene", Physical Chemistry Chemical Physics15 ( 12 ) : p. 4428-4435, 2013
    • 29 Rao , C.N.R.U. MaitraU.V . Waghmare, "Extraordinary attributes of 2-dimensional MoS2 nanosheets", Chemical Physics Letters609 : p. 172-183, 2014
    • 30 326 . HankinA. , et al., "Flat band potential determination : avoiding the pitfalls", Journal of Materials Chemistry A7 ( 45 ) : p. 26162-26176, 2019
    • 31 Taha-Tijerina , J. , et al., "Electrically Insulating Thermal Nano-Oils Using 2D Fillers", Acs Nano6 ( 2 ) : p. 1214-1220, 2012
    • 32 442 . McIntyreD. Zetaruk, "N.X-ray photoelectron spectroscopic studies of iron oxides", Analytical Chemistry49 ( 11 ) : p. 1521-1529, 1977
    • 33 ZhangH. , et al., "P25-Graphene Composite as a High Performance Photocatalyst", Acs Nano4 ( 1 ) : p. 380-386, 2010
    • 34 Patterson , A., "The Scherrer formula for X-ray particle size determination", Physical review1939 . 56 ( 10 ) : p. 978, null
    • 35 Novoselov , K.S. , et al., "Two-dimensional gas of massless Dirac fermions in graphene", Nature438 ( 7065 ) : p. 197-200, 2005
    • 36 428 . WangT. , et al., "MoS2-Based Nanocomposites for Electrochemical Energy Storage", Adv Sci ( Weinh )4 ( 2 ) : p. 1600289, 2017
    • 37 Kong , X.al.Free-Standing Holey Ni, "OH ) 2 Nanosheets with Enhanced Activity for Water Oxidation", Small13 ( 26, 2017
    • 38 Dresselhaus , M.S .P.T . Araujo, "Perspectives on the 2010 nobel prize in physics for graphene", ACS Publications, 2010
    • 39 Li , Y. , et al., "Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction", Acs Catalysis8 ( 3 ) : p. 1913-1920, 2018
    • 40 255 . AzadmanjiriJ. , et al., "Graphene-supported 2D transition metal oxide heterostructures", Journal of Materials Chemistry A6 ( 28 ) : p. 13509-13537, 2018
    • 41 Grosvenor , A.P. , et al., "New interpretations of XPS spectra of nickel metal and oxides", Surface Science600 ( 9 ) : p. 1771-1779, 2006
    • 42 Frey , G.L. , et al., "Raman and resonance Raman investigation of MoS 2 nanoparticles", Physical Review B60 ( 4 ) : p. 2883, 1999
    • 43 443 . OkuM. , K. HirokawaS. Ikeda, "X-ray photoelectron spectroscopy of manganese ? oxygen systems", Journal of Electron Spectroscopy and Related Phenomena7 ( 5 ) : p. 465-473, 1975
    • 44 Gupta , H. , et al., "High performance supercapacitor based on 2D-MoS2 nanostructures", Materials TodayProceedings26 : p. 20-24, 2020
    • 45 440 . BernardM.C. , et al., "Electrochromic reactions in manganese oxides : I. Raman analysis", Journal of the Electrochemical Society140 ( 11 ) : p. 3065, 1993
    • 46 327 . ColiK.K . Bajaj, "Excitonic transitions in ZnO/MgZnO quantum well heterostructures", Applied Physics Letters78 ( 19 ) : p. 2861-2863, 2001
    • 47 383 . JiaoL. , et al., "Metal-Organic Frameworks as Platforms for Catalytic Applications", Adv Mater30 ( 37 ) : p. e1703663, 2018
    • 48 280 . ZhangY.-y. , et al., "Electrochemical deposition of hydroxyapatite coatings on titanium", Transactions of Nonferrous Metals Society of China16 ( 3 ) : p. 633-637, 2006
    • 49 153 . SubramanyaB. , et al., "Novel Co-Ni-graphene composite electrodes for hydrogen production", Rsc Advances5 ( 59 ) : p. 47398-47407, 2015
    • 50 Knieke , C. , et al., "Scalable production of graphene sheets by mechanical delamination", Carbon48 ( 11 ) : p. 3196-3204, 2010
    • 51 Gorbachev , R.V. , et al., "Hunting for monolayer boron nitride : optical and Raman signatures", Small7 ( 4 ) : p. 465-8, 2011
    • 52 283 . LeiY. , et al., "Photoelectric properties of SnO2 decorated by graphene quantum dots", Materials Science in Semiconductor Processing102 : p. 104582, 2019
    • 53 PattisonJ. , et al., "Standoff distance and bow shock phenomena in the Cold Spray process", Surface and Coatings Technology202 ( 8 ) : p. 1443-1454, 2008
    • 54 170 . BernardM. , et al., "Structural defects and electrochemical reactivity of β-Ni ( OH ) 2", Journal of Power Sources63 ( 2 ) : p. 247-254, 1996
    • 55 Milev , A. , et al., "X-ray diffraction line profile analysis of nanocrystalline graphite", Materials Chemistry and Physics111 ( 2-3 ) : p. 346-350, 2008
    • 56 Le , T.H. , et al., "Exfoliation of 2D Materials for Energy and Environmental Applications", Chemistry26 ( 29 ) : p. 6360-6401, 2020
    • 57 184 . BronoelJ. Reby, "G.Mechanism of oxygen evolution in basic medium at a nickel electrode", Electrochimica Acta25 ( 7 ) : p. 973-976, 1980
    • 58 321 . Bylander, "Surface effects on the low ? energy cathodoluminescence of zinc oxide", Journal of Applied Physics49 ( 3 ) : p. 1188-1195, E.1978
    • 59 226 . JiangL.C . Li, "Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route", Materials Letters61 ( 27 ) : p. 4894-4896, 2007
    • 60 Zhuang , X. , et al., "Two-dimensional soft nanomaterials : a fascinating world of materials", Adv Mater27 ( 3 ) : p. 403-27, 2015
    • 61 358 . Xue, "B. and Y. Zou , High photocatalytic activity of ZnO-graphene composite", J Colloid Interface Sci529 : p. 306-313, 2018
    • 62 Chen , X. , et al., "Explosive compact-coating of tungsten-copper alloy to a copper surface", Materials Research Express4 ( 3 ) : p. 036502, 2017
    • 63 Chun , D.-M. , et al., "Nano/micro particle beam for ceramic deposition and mechanical etching", Physica ScriptaT139 ) : p. 014047, 20102010
    • 64 Chun , D.M. , et al., "Nano/micro particle beam for ceramic deposition and mechanical etching", Physica ScriptaT139 ( T139 ) : p. 014047, 2010
    • 65 ZhangJ. , et al., "Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures", Adv Mater28 ( 10 ) : p. 1950-6, 2016
    • 66 279 . YangB. , et al., "Preparation of bioactive titanium metal via anodic oxidation treatment", Biomaterials25 ( 6 ) : p. 1003-1010, 2004
    • 67 Cai , Q. , et al., "Raman signature and phonon dispersion of atomically thin boron nitride", Nanoscale9 ( 9 ) : p. 3059-3067, 2017
    • 68 360 . YeJ.D. , et al., "Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films", Applied Physics Letters88 ( 10 ) : p. 101905, 2006
    • 69 421 . ParidaK.S. KanungoB. Sant, "Studies on chemically precipitated Mn ( IV ) oxides . Electrochim Acta", 26 ( 2 ) : p. 435-443, 1981
    • 70 441 . RaniB.J. , et al., "Synthesis and characterization of hausmannite ( Mn3O4 ) nanostructures", Surfaces and Interfaces11 : p. 28-36, 2018
    • 71 415 . SwathiS. , et al., "Water-splitting application of orthorhombic molybdite α-MoO3 nanorods", Ceramics International46 ( 14 ) : p. 23218-23222, 2020
    • 72 Jayasena , B.S. Subbiah, "A novel mechanical cleavage method for synthesizing few-layer graphenes", Nanoscale Res Lett6 ( 1 ) : p. 95, 2011
    • 73 Zhu , W.S. , et al., "Controlled Gas Exfoliation of Boron Nitride into Few-Layered Nanosheets", Angewandte Chemie-International Edition55 ( 36 ) : p. 10766-10770, 2016
    • 74 Schmidt , T. , et al., "Development of a generalized parameter window for cold spray deposition", Acta Materialia54 ( 3 ) : p. 729-742, 2006
    • 75 230 . MamalisA.G. , I.N . VotteaD.E . Manolakos, "On the modelling of the compaction mechanism of shock compacted powders", Journal of Materials Processing Technology108 ( 2 ) : p. 165-178, 2001
    • 76 Lin , H.C. , et al., "Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2", Journal of Alloys and Compounds699 : p. 222-229, 2017
    • 77 Li , L.H. , et al., "Strong oxidation resistance of atomically thin boron nitride nanosheets", ACS Nano8 ( 2 ) : p. 1457-62, 2014
    • 78 Damm , C.T.J. NackenW. Peukert, "Quantitative evaluation of delamination of graphite by wet media milling", Carbon81 : p. 284-294, 2015
    • 79 295 . BundesmannC. , et al., "Raman scattering in ZnO thin films doped with Fe , Sb , Al , Ga , and Li", Applied Physics Letters83 ( 10 ) : p. 1974-1976, 2003
    • 80 Li , X. , et al., "Synthesis and morphology control of ZnO nanostructures in microemulsions", J Colloid Interface Sci333 ( 2 ) : p. 465-73, 2009
    • 81 Hernandez , Y. , et al., "High-yield production of graphene by liquid-phase exfoliation of graphite", Nat Nanotechnol3 ( 9 ) : p. 563-8, 2008
    • 82 347 . AdelekeJ.T. , et al., "Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles", Applied Surface Science455 : p. 195-200, 2018
    • 83 Zhao , W.F. , et al., "Preparation of graphene by exfoliation of graphite using wet ball milling", Journal of Materials Chemistry20 ( 28 ) : p. 5817-5819, 2010
    • 84 Trotochaud , L. , et al., "Solution-cast metal oxide thin film electrocatalysts for oxygen evolution", Journal of the American Chemical Society134 ( 41 ) : p. 17253-17261, 2012
    • 85 Yi , M.Z.G . Shen, "A review on mechanical exfoliation for the scalable production of graphene", Journal of Materials Chemistry A3 ( 22 ) : p. 11700-11715, 2015
    • 86 Li , Q. , et al., "Flexible high-temperature dielectric materials from polymer nanocomposites", Nature523 ( 7562 ) : p. 576-9, 2015
    • 87 334 . ChenH.M. , et al., "Nano-architecture and material designs for water splitting photoelectrodes", Chemical Society Reviews41 ( 17 ) : p. 5654-5671, 2012
    • 88 296 . SerranoJ. , et al., "Pressure dependence of the lattice dynamics of ZnO : An ab initio approach", Physical Review B69 ( 9 ) : p. 094306, 2004
    • 89 Jung , J.H.C.H . ParkJ. Ihm, "A Rigorous Method of Calculating Exfoliation Energies from First Principles", Nano Lett18 ( 5 ) : p. 2759-2765, 2018
    • 90 313 . KotsisV. Staemmler, "K.Ab initio calculations of the O1s XPS spectra of ZnO and Zn oxo compounds", Phys Chem Chem Phys8 ( 13 ) : p. 1490-8, 2006
    • 91 398 . ChenW. , et al., "Recent advances in electrochemical sensing for hydrogen peroxide : a review", Analyst137 ( 1 ) : p. 49-58, 2012
    • 92 Janot , R.D. Guerard, "Ball-milling : the behavior of graphite as a function of the dispersal media", Carbon40 ( 15 ) : p. 2887-2896, 2002
    • 93 Yang , X. , et al., "Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation", Catalysis Today327 : p. 254-261, 2019
    • 94 Lee , J.G.H . LimB. Lim, "Nanostructuring of metal surfaces by corrosion for efficient water splitting", Chemical Physics Letters644 : p. 51-55, 2016
    • 95 Kaschner , A. , et al., "Nitrogen-related local vibrational modes in ZnO : N. Applied Physics Letters", 80 ( 11 ) : p. 1909-1911, 2002
    • 96 311 . DworschakD.C. BrunnhoferM. Valtiner, "Photocorrosion of ZnO Single Crystals during Electrochemical Water Splitting", ACS Appl Mater Interfaces12 ( 46 ) : p. 51530-51536, 2020
    • 97 Lin , L.X. , et al., "Surface Energy Engineering in the Solvothermal Deoxidation of Graphene Oxide", Advanced Materials Interfaces1 ( 3 ) : p. 1300078, 2014
    • 98 Parvez , K. , et al., "Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts", Journal of the American Chemical Society136 ( 16 ) : p. 6083-6091, 2014
    • 99 451 . TianZ.Y. , et al., "Synthesis of the Catalytically Active Mn3O4 Spinel and Its Thermal Properties", Journal of Physical Chemistry C117 ( 12 ) : p. 6218-6224, 2013
    • 100 154 . HuangY.G. , et al., "The effect of graphene for the hydrogen evolution reaction in alkaline medium", International Journal of Hydrogen Energy41 ( 6 ) : p. 3786-3793, 2016
    • 101 424 . WuZ.L. , et al., "Binary cobalt and manganese oxides : Amperometric sensing of hydrogen peroxide", Sensors and Actuators B-Chemical253 : p. 949-957, 2017
    • 102 Sekine , T. , et al., "Dispersive Raman Mode of Layered Compound 2h-Mos2 under the Resonant Condition", Journal of the Physical Society of Japan53 ( 2 ) : p. 811-818, 1984
    • 103 405 . HsuM.-S. , et al., "Gold nanostructures on flexible substrates as electrochemical dopamine sensors", ACS applied materials & interfaces4 ( 10 ) : p. 5570-5575, 2012
    • 104 Coleman , J.N. , et al., "Two-dimensional nanosheets produced by liquid exfoliation of layered materials", Science331 ( 6017 ) : p. 568-71, 2011
    • 105 284 . LeiY. , et al., "Enhanced photoelectric performance of CdSe by graphene quantum dot modification", Materials Research Express6 ( 1 ) : p. 015906, 2018
    • 106 Jiang , L.al. , Ni, "/CoO/reduced graphene oxide composites with excellent electrochemical properties", Journal of Materials Chemistry A1 ( 3 ) : p. 478-481, OH2013
    • 107 Elhag , S. , et al., "Dopamine wide range detection sensor based on modified Co3O4 nanowires electrode", Sensors and Actuators B-Chemical203 : p. 543-549, 2014
    • 108 363 . DembeleK.T. , et al., "Graphene below the percolation threshold in TiO 2 for dye-sensitized solar cells", Journal of Materials Chemistry A3 ( 6 ) : p. 2580-2588, 2015
    • 109 180 . LongoA. , et al., "Graphene oxide prepared by graphene nanoplatelets and reduced by laser treatment", Nanotechnology28 ( 22 ) : p. 224002, 2017
    • 110 237 . LiA. , et al., "Graphene supported atomic Co/nanocrystalline Co3O4 for oxygen evolution reaction", Electrochimica Acta276 : p. 153-161, 2018
    • 111 330 ., "J. and D. Vanmaekelbergh , Charge carrier dynamics in nanoporous photoelectrodes", Electrochimica acta43 ( 19-20 ) : p. 2773-2780, Kelly1998
    • 112 J.S. , et al., "Single atom hot-spots at Au ? Pd nanoalloys for electrocatalytic H2O2 production", Journal of the American Chemical Society133 ( 48 ) : p. 19432-19441, 2011
    • 113 Musa , I.N. QamhiehS.T . Mahmoud, "Synthesis and length dependent photoluminescence property of zinc oxide nanorods", Results in Physics7 : p. 3552-3556, 2017
    • 114 373 . LiangY. ,al. , Co, "nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction", Nat Mater10 ( 10 ) : p. 780-6, 2011
    • 115 WangZ.G. , et al., "Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene", New Journal of Chemistry44 ( 31 ) : p. 13377-13381, 2020
    • 116 414 . PrakashN.G. , et al., "High performance one dimensional α-MoO3 nanorods for supercapacitor applications", Ceramics International44 ( 8 ) : p. 9967-9975, 2018
    • 117 Bhimanapati , G.R.D. KozuchJ.A . Robinson, "Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets", Nanoscale6 ( 20 ) : p. 11671-5, 2014
    • 118 333 . JiangC. , et al., "Photoelectrochemical devices for solar water splitting - materials and challenges", Chem Soc Rev46 ( 15 ) : p. 4645-4660, 2017
    • 119 304 . MorozovI.G. ,al. , Structural, "optical , XPS and magnetic properties of Zn particles capped by ZnO nanoparticles", Journal of Alloys and Compounds633 : p. 237-245, 2015
    • 120 252 . CaoG.S. , et al., "ELECTROCHEMICAL Co3O4 NANOPOROUS THIN FILMS SENSOR FOR HYDROGEN PEROXIDE DETECTION", Nano9 ( 4 ) : p. 1450047, 2014
    • 121 Liu , Z.J. , et al., "Graphite blocks with high thermal conductivity derived from natural graphite flake", Carbon46 ( 3 ) : p. 414-421, 2008
    • 122 Liu , F.H. , et al., "High-Energy-Density Dielectric Polymer Nanocomposites with Trilayered Architecture", Advanced Functional Materials27 ( 20 ) : p. 1606292, 2017
    • 123 WaradH.C. , et al., "Luminescent nanoparticles of Mn doped ZnS passivated with sodium hexametaphosphate", Science and Technology of Advanced Materials6 ( 3-4 ) : p. 296-301, 2005
    • 124 Wu , X. , et al., "Mn3O4 nanocube : an efficient electrocatalyst toward artificial N2 fixation to NH3", Small14 ( 48 ) : p. 1803111, 2018
    • 125 Zhu , J. , et al., "Two-Dimensional Porous Polymers : From Sandwich-like Structure to Layered Skeleton", Acc Chem Res51 ( 12 ) : p. 3191-3202, 2018
    • 126 448 . BrabersV.A.M. , F.M . VansettenP.S.A . Knapen, "X-Ray Photoelectron-Spectroscopy Study of the Cation Valencies in Nickel Manganite", Journal of Solid State Chemistry49 ( 1 ) : p. 93-98, 1983
    • 127 Chen , J.X.F . WuA. Selloni, "Electronic structure and bonding properties of cobalt oxide in the spinel structure", Physical Review B83 ( 24 ) : p. 245204, 2011
    • 128 301 . TzolovM. , et al., "Modification of the structure of ZnO : Al films by control of the plasma parameters", Thin Solid Films396 ( 1-2 ) : p. 274-279, 2001
    • 129 341 . KhodjaA.A. , et al., "Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions", Journal of Photochemistry and Photobiology a-Chemistry141 ( 2-3 ) : p. 231-239, 2001
    • 130 123 . WietingJ. Verble, "T.Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal Mo S 2", Physical Review B3 ( 12 ) : p. 4286, 1971
    • 131 371 . ZhouX. , et al., "Ultrathin porous Co 3 O 4 nanoplates as highly efficient oxygen evolution catalysts", Journal of Materials Chemistry A3 ( 15 ) : p. 8107-8114, 2015
    • 132 310 . AlshammariA.S. , et al., "Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis", RSC advances5 ( 35 ) : p. 27690-27698, 2015
    • 133 Antisari , M.V. , et al., "Low energy pure shear milling : A method for the preparation of graphite nano-sheets", Scripta Materialia55 ( 11 ) : p. 1047-1050, 2006
    • 134 239 . T, "ys ? z , H. , et al. , Mesoporous Co 3 O 4 as an electrocatalyst for water oxidation", Nano Research6 ( 1 ) : p. 47-54, 2013
    • 135 411 . ArifA.F.M. , K.S . Al-AthelJ. Mostaghimi, "3.4 Residual Stresses in Thermal Spray Coating , in Comprehensive Materials Finishing", M.S.J . Hashmi , EditorElsevier : Oxford . p. 56-70, 2017
    • 136 328 . CendulaP. , et al., "Calculation of the energy band diagram of a photoelectrochemical water splitting cell", The Journal of Physical Chemistry C118 ( 51 ) : p. 29599-29607, 2014
    • 137 Kaniyoor , A.T.T . BabyS. Ramaprabhu, "Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide", Journal of Materials Chemistry20 ( 39 ) : p. 8467-8469, 2010
    • 138 Endo , M. , et al., "Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite", Journal of Applied Physics90 ( 11 ) : p. 5670-5674, 2001
    • 139 Khan , U. , et al., "Size selection of dispersed , exfoliated graphene flakes by controlled centrifugation", Carbon50 ( 2 ) : p. 470-475, 2012
    • 140 172 . JohnstonP. Graves, "C.In situ Raman spectroscopy study of the nickel oxyhydroxide electrode ( NOE ) system", Applied spectroscopy44 ( 1 ) : p. 105-115, 1990
    • 141 389 . WeiC. , et al., "MoS2 nanosheets decorated Ni ( OH ) 2 nanorod array for active overall water splitting", Journal of Alloys and Compounds796 : p. 86-92, 2019
    • 142 298 . WangY.G. , et al., "Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films", Journal of Crystal Growth252 ( 1-3 ) : p. 265-269, 2003
    • 143 314 . Akhavan, "Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol", Carbon49 ( 1 ) : p. 11-18, O.2011
    • 144 198 . AnantharajS. Noda, "S.Amorphous Catalysts and Electrochemical Water Splitting : An Untold Story of Harmony", Small16 ( 2 ) : p. e1905779, 2020
    • 145 370 . FatimahI.S.B . WangD. Wulandari, "ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue", Applied Clay Science53 ( 4 ) : p. 553-560, 2011
    • 146 Vidano , R. , et al., "Observation of Raman band shifting with excitation wavelength for carbons and graphites", Solid State Communications39 ( 2 ) : p. 341-344, 1981
    • 147 297 . ReussF. , et al., "Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO", Journal of Applied Physics95 ( 7 ) : p. 3385-3390, 2004
    • 148 312 . GomathisankarP. , et al., "Photocatalytic Hydrogen Production from Aqueous Na2S + Na2SO3 Solution with B-Doped ZnO", Acs Sustainable Chemistry & Engineering1 ( 8 ) : p. 982-988, 2013
    • 149 412 . ZhangE. , et al., "Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell", Biosensors and Bioelectronics81 : p. 46-53, 2016
    • 150 434 . BangG.S. , et al., "Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets", ACS Appl Mater Interfaces6 ( 10 ) : p. 7084-9, 2014
    • 151 Gao , M. , et al., "Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst", Journal of the American Chemical Society136 ( 19 ) : p. 7077-7084, 2014
    • 152 435 . HuY. , et al., "Synthesis of monodispersed single-crystal compass-shaped Mn3O4 via gamma-ray irradiation", Materials Letters60 ( 3 ) : p. 383-385, 2006
    • 153 Ni , S.B. , et al., "The investigation of Ni ( OH ) ( 2 ) /Ni as anodes for high performance Li-ion batteries", Journal of Materials Chemistry A1 ( 5 ) : p. 1544-1547, 2013
    • 154 220 . ChunD.M. , et al., "TiO2 coating on metal and polymer substrates by nano-particle deposition system ( NPDS )", CIRP Annals57 ( 1 ) : p. 551-554, 2008
    • 155 277 . ChunD.M. , et al., "TiO2 coating on metal and polymer substrates by nano-particle deposition system ( NPDS )", Cirp Annals-Manufacturing Technology57 ( 1 ) : p. 551-554, 2008
    • 156 Zhang , H.Ultrathin Two-Dimensional Nanomaterials, "2. Zhang, H., Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015. 9(10): p. 9451-69.", ACS Nano9 ( 10 ) : p. 9451-69, 2015
    • 157 209 . LiangY. , et al., "Co 3 O 4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction", Nature materials10 ( 10 ) : p. 780, 2011
    • 158 192 . DengX.H .H. Tuysuz, "Cobalt-Oxide-Based Materials as Water Oxidation Catalyst : Recent Progress and Challenges", Acs Catalysis4 ( 10 ) : p. 3701-3714, 2014
    • 159 354 . MaM. , et al., "Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting", Journal of Semiconductors41 ( 9 ) : p. 091702, 2020
    • 160 376 . LukowskiM.A. , et al., "Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets", J Am Chem Soc135 ( 28 ) : p. 10274-7, 2013
    • 161 WangL. , et al., "Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite", Environ Pollut249 : p. 801-811, 2019
    • 162 Kong , L. , et al., "Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection", Nano Research8 ( 2 ) : p. 469-480, 2015
    • 163 WangH. , et al., "OH ) 2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials", J Am Chem Soc132 ( 21 ) : p. 7472-7, Ni2010
    • 164 105 . KaniyoorA. , et al.Wrinkled Graphenes, "A Study on the Effects of Synthesis Parameters on Exfoliation- Reduction of Graphite Oxide", Journal of Physical Chemistry C115 ( 36 ) : p. 17660-17669, 2011
    • 165 249 . WangM. , et al., "A novel H2O2 electrochemical sensor based on NiCo2S4 functionalized reduced graphene oxide", Journal of Alloys and Compounds784 : p. 827-833, 2019
    • 166 355 . HsiehS.H .J.M . Ting, "Characterization and photocatalytic performance of ternary Cu-doped ZnO/Graphene materials", Applied Surface Science427 : p. 465-475, 2018
    • 167 156 . XingC. , et al., "Fluorographdiyne : A Metal-Free Catalyst for Applications in Water Reduction and Oxidation", Angew Chem Int Ed Engl58 ( 39 ) : p. 13897-13903, 2019
    • 168 Li , X.M. , et al., "Nanostructured catalysts for electrochemical water splitting : current state and prospects", Journal of Materials Chemistry A4 ( 31 ) : p. 11973-12000, 2016
    • 169 Gao , Y.J. , et al., "Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature", Chemical Communications47 ( 8 ) : p. 2432-2434, 2011
    • 170 Cravotto , G.P. Cintas, "Sonication-assisted fabrication and post-synthetic modifications of graphenelike materials", Chemistry16 ( 18 ) : p. 5246-59, 2010
    • 171 n , J. , et al., "Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD", Microporous and mesoporous materials60 ( 1-3 ) : p. 173-181, 2003
    • 172 155 . XueY. , et al., "Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution", Nat Commun9 ( 1 ) : p. 1460, 2018
    • 173 340 . VaianoV. , et al., "Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag", Applied Catalysis B-Environmental225 : p. 197-206, 2018
    • 174 432 . LiY. , et al., "Hetero-structured MnO-Mn3O4 @ rGO composites : Synthesis and nonenzymatic detection of H2O2", Mater Sci Eng C Mater Biol Appl2021 . 118 : p. 111443, null
    • 175 LiY.Y. , et al., "Hetero-structured MnO-Mn3O4 @ rGO composites : Synthesis and nonenzymatic detection of H2O2", Materials Science & Engineering C-Materials for Biological Applications , 2021 . 118 : p. 111443, null
    • 176 272 . MaT.Y. , et al., "Al2O3-doped ZnO coating of carbon nanotubes as cathode material for lithium-sulfur batteries", Journal of Power Sources398 : p. 75-82, 2018
    • 177 Narula , U.C.M . TanC.S . Lai, "Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon", Scientific Reports7 ( 1 ) : p. 1-13, 2017
    • 178 300 . WangX.Q. , et al., "Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition", Journal of Crystal Growth226 ( 1 ) : p. 123-129, 2001
    • 179 316 . ChristyA.A. , O.M . KvalheimR.A. Velapoldi, "Quantitative analysis in diffuse reflectance spectrometry : a modified Kubelka-Munk equation", Vibrational Spectroscopy9 ( 1 ) : p. 19-27, 1995
    • 180 Zhang , K. , et al., "Two dimensional hexagonal boron nitride ( 2D-hBN ) : synthesis , properties and applications", Journal of Materials Chemistry C5 ( 46 ) : p. 11992-12022, 2017
    • 181 335 . FujishimaA.X. ZhangD.A . Tryk, "Heterogeneous photocatalysis : From water photolysis to applications in environmental cleanup", International Journal of Hydrogen Energy32 ( 14 ) : p. 2664-2672, 2007
    • 182 214 . WangM. , et al., "Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method", Electrochimica Acta182 : p. 613-620, 2015
    • 183 367 . AbdellahM.H. , et al., "Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging", Alexandria Engineering Journal57 ( 4 ) : p. 3727-3735, 2018
    • 184 350 . RaizadaP.A. SudhaikP. Singh, "Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts : A review", Materials Science for Energy Technologies2 ( 3 ) : p. 509-525, 2019
    • 185 402 . Chen, "A. and S. Chatterjee , Nanomaterials based electrochemical sensors for biomedical applications", Chemical Society Reviews42 ( 12 ) : p. 5425-5438, 2013
    • 186 288 . AliR.N. ,, "Band gap engineering of transition metal ( Ni/Co ) codoped in zinc oxide ( ZnO ) nanoparticles", Journal of Alloys and Compounds744 : p. 90-95, al.2018
    • 187 Zhai , D. , et al., "Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures", ACS nano7 ( 4 ) : p. 3540-3546, 2013
    • 188 343 . ChenC. , et al., "Investigation of photocatalytic degradation of methyl orange by using nano-sized ZnO catalysts", Advances in Chemical Engineering and Science1 ( 01 ) : p. 9, 2011
    • 189 Xu , Y.al.Engineering Ni, "Nanosheet on CoMoO4 Nanoplate Array as Efficient Electrocatalyst for Oxygen Evolution Reaction", Acs Sustainable Chemistry & Engineering6 ( 12 ) : p. 16086-16095, OH2018
    • 190 235 . WangH.Y. , et al., "Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4", J Am Chem Soc138 ( 1 ) : p. 36-9, 2016
    • 191 267 . OngC.B. , L.Y . NgA.W . Mohammad, "A review of ZnO nanoparticles as solar photocatalysts : synthesis , mechanisms and applications", Renewable and Sustainable Energy Reviews81 : p. 536-551, 2018
    • 192 135 . LouieM.W .A.T. Bell, "An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen", J Am Chem Soc135 ( 33 ) : p. 12329-37, 2013
    • 193 348 . FuY.S.X.Q . SunX. Wang, "BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation", Materials Chemistry and Physics131 ( 1-2 ) : p. 325-330, 2011
    • 194 Lee , J.C. ShimB. Lee, "Graphene in edge-carboxylated graphite by ball milling and analyses using finite element method", Int . J . Mater . Sci . Appl2 ( 6 ) : p. 209, 2013
    • 195 Kong , L.al., "Interconnected 1D Co 3 O 4 nanowires on reduced graphene oxide for enzymeless H 2 O 2 detection", Nano Research8 ( 2 ) : p. 469-480, 2015
    • 196 Yu , X.G. , et al., "Microstructural Engineering of Heterogeneous P-S-Co Interface for Oxygen and Hydrogen Evolution", Chemelectrochem6 ( 14 ) : p. 3708-3713, 2019
    • 197 452 . DaripaS. , et al., "Mn 3 O 4 nanocluster-graphene hybrid for energy storage and electrochemical sensing application", Ionicsp. 1-9, 2019
    • 198 391 . WangJ.S. , et al., "Synergistic effect of two actions sites on cobalt oxides towards electrochemical wateroxidation", Nano Energy42 : p. 98-105, 2017
    • 199 365 . MeidanchiO. Akhavan, "A.Superparamagnetic zinc ferrite spinel-graphene nanostructures for fast wastewater purification", Carbon69 : p. 230-238, 2014
    • 200 369 . LiuX.J. , et al., "Microwave-assisted synthesis of ZnO-graphene composite for photocatalytic reduction of Cr ( VI )", Catalysis Science & Technology1 ( 7 ) : p. 1189-1193, 2011
    • 201 247 . ParvezK. , et al., "One-step electrochemical synthesis of nitrogen and sulfur co-doped , high-quality graphene oxide", Chem Commun ( Camb )52 ( 33 ) : p. 5714-7, 2016
    • 202 315 . AkhavanO. , et al., "Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction", Journal of Physical Chemistry C114 ( 30 ) : p. 12955-12959, 2010
    • 203 Tsuji , E. , et al., "Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution", Electrochimica Acta56 ( 5 ) : p. 2009-2016, 2011
    • 204 RaoY. , et al., "Hydrotalcite-like Ni ( OH ) 2 Nanosheets in Situ Grown on Nickel Foam for Overall Water Splitting", ACS Appl Mater Interfaces8 ( 49 ) : p. 33601-33607, 2016
    • 205 Hall , D.S. , et al., "Nickel hydroxides and related materials : a review of their structures , synthesis and properties", Proc Math Phys Eng Sci471 ( 2174 ) : p. 20140792, 2015
    • 206 Kwon , I.S. , et al., "Ruthenium Nanoparticles on Cobalt ? Doped 1T′ Phase MoS2 Nanosheets for Overall Water Splitting", Small16 ( 13 ) : p. 2000081, 2020
    • 207 Del Rio-CastilloA.E. , et al., "Selective suspension of single layer graphene mechanochemically exfoliated from carbon nanofibres", Nano Research7 ( 7 ) : p. 963-972, 2014
    • 208 407 . XiongX. , et al., "Ni2P nanosheets array as a novel electrochemical catalyst electrode for non-enzymatic H2O2 sensing", Electrochimica Acta253 : p. 517-521, 2017
    • 209 Lv , Y.Y. , et al., "Synthesis of graphene nanosheet powder with layer number control via a soluble salt-assisted route", Rsc Advances4 ( 26 ) : p. 13350-13354, 2014
    • 210 403 . WeiE. Wang, "H.Nanomaterials with enzyme-like characteristics ( nanozymes ) : next-generation artificial enzymes", Chemical Society Reviews42 ( 14 ) : p. 6060-6093, 2013
    • 211 271 . KhanI. , et al., "Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for photoelectrochemical water splitting", Ultrason Sonochem37 : p. 669-675, 2017
    • 212 426 . GeimA.K .K.S . Novoselov, "The rise of graphene , in Nanoscience and technology : a collection of reviews from nature journals", World Scientific . p. 11-19, 2010
    • 213 WangL.Q. , et al.Three-dimensional Ni, "nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications", International Journal of Hydrogen Energy39 ( 15 ) : p. 7876-7884, OH2014
    • 214 459 . SiP. , et al., "A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors", Journal of Materials Chemistry B1 ( 1 ) : p. 110-115, 2013
    • 215 Zhou , X. , et al., "Dispersion of graphene sheets in ionic liquid [ bmim ] [ PF6 ] stabilized by an ionic liquid polymer", Chem Commun ( Camb )46 ( 3 ) : p. 386-8, 2010
    • 216 Yuan , Y.X.R.Q . LiZ.H . Liu, "Establishing Water-Soluble Layered WS2 Nanosheet as a Platform for Biosensing . Analytical Chemistry", 86 ( 7 ) : p. 3610-3615, 2014
    • 217 447 . AswathyR.M. UlaganathanP. Ragupathy, "Mn3O4 nanoparticles grown on surface activated graphite paper for aqueous asymmetric supercapacitors", Journal of Alloys and Compounds767 : p. 141-150, 2018
    • 218 285 . RajaK. , P.S . RameshD. Geetha, "Structural , FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method", Spectrochim Acta A Mol Biomol Spectrosc131 : p. 183-8, 2014
    • 219 303 . Al-GaashaniR. , et al., "XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods", Ceramics International39 ( 3 ) : p. 2283-2292, 2013
    • 220 307 . TakY.D. ParkK. Yong, "Characterization of ZnO nanorod arrays fabricated on Si wafers using a lowtemperature synthesis method", Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures Processing , Measurement , and Phenomena24 ( 4 ) : p. 2047-2052, 2006
    • 221 KlausS. , et al., "Effects of Fe Electrolyte Impurities on Ni ( OH ) ( 2 ) /NiOOH Structure and Oxygen Evolution Activity", Journal of Physical Chemistry C119 ( 13 ) : p. 7243-7254, 2015
    • 222 458 . ChangX. , et al., "Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes", J Am Chem Soc137 ( 26 ) : p. 8356-9, 2015
    • 223 Kang , J. , et al., "Fabrication of the SnO2/α-Fe2O3 Hierarchical Heterostructure and Its Enhanced Photocatalytic Property", The Journal of Physical Chemistry C115 ( 16 ) : p. 7874-7879, 2011
    • 224 LiuZ.B. , et al., "Graphite-graphene architecture stabilizing ultrafine Co3O4 nanoparticles for superior oxygen evolution", Carbon140 : p. 17-23, 2018
    • 225 Posudievsky , O.Y. , et al., "High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite", Journal of Nanoparticle Research15 ( 11 ) : p. 2046, 2013
    • 226 Shinagawa , T.A.T. Garcia-EsparzaK. Takanabe, "Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion", Sci Rep5 : p. 13801, 2015
    • 227 Wei , S. , et al., "Iridium-triggered phase transition of MoS2 nanosheets boosts overall water splitting in alkaline media", ACS Energy Letters4 ( 1 ) : p. 368-374, 2018
    • 228 404 . WuJ. , et al., "Nanomaterials with enzyme-like characteristics ( nanozymes ) : next-generation artificial enzymes ( II", Chemical Society Reviews48 ( 4 ) : p. 1004-1076, 2019
    • 229 294 . IqbalJ. , et al., "Synthesis as well as Raman and optical properties of Cu-doped ZnO nanorods prepared at low temperature", Ceramics International40 ( 1 ) : p. 2091-2095, 2014
    • 230 457 . SiP. , et al., "A hierarchically structured composite of Mn 3 O 4/3D graphene foam for flexible nonenzymatic biosensors", Journal of Materials Chemistry B1 ( 1 ) : p. 110-115, 2013
    • 231 269 . QurashiA. , K.S . SubrahmanyamP. Kumar, "Nanofiller graphene-ZnO hybrid nanoarchitecture : optical , electrical and optoelectronic investigation", Journal of Materials Chemistry C3 ( 45 ) : p. 11959-11964, 2015
    • 232 393 . StacyD.T . Hodul, "Raman-Spectra of Ivb and Vib Transition-Metal Disulfides Using Laser Energies near the Absorption Edges", Journal of Physics and Chemistry of Solids46 ( 4 ) : p. 405-409, 1985
    • 233 410 . JiangJ. , et al., "Recent advances in metal oxide ? based electrode architecture design for electrochemical energy storage", Advanced materials24 ( 38 ) : p. 5166-5180, 2012
    • 234 437 . NarayaniL. , et al., "Mechanism of high temperature induced phase transformation and magnetic properties of Mn3O4 crystallites", Journal of Magnetism and Magnetic Materials476 : p. 268-273, 2019
    • 235 201 . BergmannA. , et al., "Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution", Nat Commun6 : p. 8625, 2015
    • 236 64 . Akedo, "Aerosol deposition of ceramic thick films at room temperature : densification mechanism of ceramic layers", Journal of the American Ceramic Society89 ( 6 ) : p. 1834-1839, J.2006
    • 237 329 . Covington, "D. and D. Ray , Effect of surface regions on the electrical conductivity of extrinsic semiconductor films", Journal of Applied Physics45 ( 6 ) : p. 2616-2620, 1974
    • 238 256 . ChenX.G. , et al., "Fabrication of sandwich-structured ZnO/reduced graphite oxide composite and its photocatalytic properties", Journal of Materials Science45 ( 4 ) : p. 953-960, 2010
    • 239 372 . GuanC. , et al., "Hollow Co3 O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc-Air Batteries", Adv Mater29 ( 44 ) : p. 1704117, 2017
    • 240 422 . AbbasiA.Z. , et al., "Magnetic Capsules for NMR Imaging : Effect of Magnetic Nanoparticles Spatial Distribution and Aggregation", Journal of Physical Chemistry C115 ( 14 ) : p. 6257-6264, 2011
    • 241 438 . LuoY. , et al., "Probing the surface structure of α-Mn2O3 nanocrystals during CO oxidation by operando Raman spectroscopy", The Journal of Physical Chemistry C116 ( 39 ) : p. 20975-20981, 2012
    • 242 Paton , K.R. , et al., "Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids", Nat Mater13 ( 6 ) : p. 624-30, 2014
    • 243 455 . YangS.L. , et al., "Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor", Sensors and Actuators B-Chemical221 : p. 172-178, 2015
    • 244 317 . DolgonosA.T.O . MasonK.R . Poeppelmeier, "Direct optical band gap measurement in polycrystalline semiconductors : A critical look at the Tauc method", Journal of Solid State Chemistry240 : p. 43-48, 2016
    • 245 449 . Salavati-NiasariM. , F. DavarM. Mazaheri, "Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [ bis ( salicylidiminato ) manganese ( II )", complex . Polyhedron27 ( 17 ) : p. 3467-3471, 2008
    • 246 362 . LuD.B. , et al., "Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes", Journal of Alloys and Compounds579 : p. 336-342, 2013
    • 247 243 . XuJ.M. , et al., "Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries", Journal of Power Sources274 : p. 816-822, 2015
    • 248 246 . HuL.S. , et al., "Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors", Nano Energy34 : p. 515-523, 2017
    • 249 Sun , A. , et al., Sun , A.K. , et al., "Enhanced energy storage performance from Co-decorated MoS2 nanosheets as supercapacitor electrode materials", Ceramics International44 ( 11 ) : p. 13434-13438, 2018
    • 250 395 . YangY.Q. , et al., "MoS2-Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting", Acs Catalysis7 ( 4 ) : p. 2357-2366, 2017
    • 251 366 . BaiS. , et al., "One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal", Carbon50 ( 6 ) : p. 2337-2346, 2012
    • 252 352 . XuT.G. , et al., "Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study", Applied Catalysis B-Environmental101 ( 3-4 ) : p. 382-387, 2011
    • 253 202 . KlinganK. , et al., "Water oxidation by amorphous cobalt-based oxides : volume activity and proton transfer to electrolyte bases", ChemSusChem7 ( 5 ) : p. 1301-10, 2014
    • 254 423 . WangL. , et al., "Non-enzymatic electrochemical sensors for the detection of H2O2 based on Mn3O4 octahedron submicrostructures", Micro & Nano Letters9 ( 10 ) : p. 736-740, 2014
    • 255 166 . HossainS. , et al., "Photocatalytic performance of few-layer Graphene/WO3 thin films prepared by a nanoparticle deposition system", Materials Chemistry and Physics226 : p. 141-150, 2019
    • 256 182 . GangulyA. , et al., "Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ Xray- Based Spectroscopies", Journal of Physical Chemistry C115 ( 34 ) : p. 17009-17019, 2011
    • 257 Najmaei , S. , et al., "Thermal effects on the characteristic Raman spectrum of molybdenum disulfide ( MoS2 ) of varying thicknesses", Applied Physics Letters100 ( 1 ) : p. 013106, 2012
    • 258 Yi , M.al., "A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite", Journal of Nanoparticle Research14 ( 8 ) : p. 1-9, 2012
    • 259 221 . ChunD.M. , et al., "A nano-particle deposition system for ceramic and metal coating at room temperature and low vacuum conditions", International Journal of Precision Engineering and Manufacturing9 ( 1 ) : p. 51-53, 2008
    • 260 385 . YanY. , et al., "A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting", Journal of Materials Chemistry A4 ( 45 ) : p. 17587-17603, 2016
    • 261 380 . ZhangJ. , et al., "Engineering water dissociation sites in MoS 2 nanosheets for accelerated electrocatalytic hydrogen production", Energy & Environmental Science9 ( 9 ) : p. 2789-2793, 2016
    • 262 232 . GeorgeS. Anandhan, "G.Structural characterization of nano-crystalline Co3O4 ultra-fine fibers obtained by sol-gel electrospinning", Journal of Sol-Gel Science and Technology67 ( 2 ) : p. 256-266, 2013
    • 263 Song , F. , et al., "High energy density supercapacitors based on porous mSiO2 @ Ni3S2/NiS2 promoted with boron nitride and carbon", Chemical Engineering Journal390 : p. 124561, 2020
    • 264 Mohammed , M.M.M .D.-M. Chun, "All-Solid-State Supercapacitor Based on MoS 2 ? Graphite Composite Prepared by the Vacuum Kinetic Spray Method", Journal of Thermal Spray Technology28 ( 5 ) : p. 963- 973, 2019
    • 265 216 . DaiH. , et al., "High-performance electrochemical biosensor for nonenzymatic H2O2 sensing based on Au @ CCo3O4 heterostructures", Biosens Bioelectron118 : p. 36-43, 2018
    • 266 417 . ZhangX. , et al., "Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation : The influence of MOFs precursors", Molecular Catalysis482 : p. 110701, 2020
    • 267 Min , S.D. , et al., "Synthesis of Ni ( OH ) ( 2 ) /RGO pseudocomposite on nickel foam for supercapacitors with superior performance", Journal of Materials Chemistry A3 ( 7 ) : p. 3641-3650, 2015
    • 268 204 . RischM. , et al., "Water oxidation by amorphous cobalt-based oxides : in situ tracking of redox transitions and mode of catalysis", Energy & Environmental Science8 ( 2 ) : p. 661-674, 2015
    • 269 Pfeiffer , T. ,, "al. , Plasmonic nanoparticle films for solar cell applications fabricated by size-selective aerosol deposition", Energy Procedia60 : p. 3-12, 2014
    • 270 Aparna , R. , et al., "An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants", Journal of Renewable and Sustainable Energy5 ( 3 ) : p. 033123, 2013
    • 271 138 . SubbaramanR. , et al., "Enhancing hydrogen evolution activity in water splitting by tailoring Li ( + ) - Ni ( OH ) ( 2 ) -Pt interfaces", Science334 ( 6060 ) : p. 1256-60, 2011
    • 272 Feng , L.L.al., "High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting", J Am Chem Soc137 ( 44 ) : p. 14023-6, 2015
    • 273 ZengH.B. , et al., "Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes : Defect Origins and Emission Controls", Advanced Functional Materials20 ( 4 ) : p. 561-572, 2010
    • 274 Ede , S.R. , et al., "One step synthesis of Ni/Ni ( OH ) ( 2 ) nano sheets ( NSs ) and their application in asymmetric supercapacitors", Rsc Advances7 ( 10 ) : p. 5898-5911, 2017
    • 275 390 . WangJ.S. , et al., "The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst", Physical Chemistry Chemical Physics19 ( 15 ) : p. 10125-10132, 2017
    • 276 Tripathi , N.K. VijayarangamuthuS. Rath, "A Raman spectroscopic study of structural evolution of electrochemically deposited ZnO films with deposition time", Materials Chemistry and Physics126 ( 3 ) : p. 568-572, 2011
    • 277 223 . DuS. , et al., "Co3O4 nanosheets as a high-performance catalyst for oxygen evolution proceeding via a double two-electron process", Chem Commun ( Camb )52 ( 40 ) : p. 6705-8, 2016
    • 278 Chun , D.-M.S.-H. Ahn, "Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system", Acta Materialia59 ( 7 ) : p. 2693-2703, 2011
    • 279 Asakura , Y. , et al., "Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors", Ultrason Sonochem15 ( 3 ) : p. 244-50, 2008
    • 280 302 . ZhouX.T.J. ShiH.O . Zhou, "Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation", Applied Surface Science258 ( 17 ) : p. 6204-6211, 2012
    • 281 137 . WangL. , et al., "Optimizing the Volmer Step by Single-Layer Nickel Hydroxide Nanosheets in Hydrogen Evolution Reaction of Platinum", Acs Catalysis5 ( 6 ) : p. 3801-3806, 2015
    • 282 Chabot , V. , et al., "A review of graphene and graphene oxide sponge : material synthesis and applications to energy and the environment", Energy & Environmental Science7 ( 5 ) : p. 1564-1596, 2014
    • 283 229 . GeorgeS. Anandhan, "G.Structural characterization of nano-crystalline Co 3 O 4 ultra-fine fibers obtained by sol ? gel electrospinning", Journal of sol-gel science and technology67 ( 2 ) : p. 256-266, 2013
    • 284 450 . NesbittH.W .D. Banerjee, "Interpretation of XPS Mn ( 2p ) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation", American Mineralogist83 ( 3-4 ) : p. 305-315, 1998
    • 285 257 . HanW.J. , et al., "Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation", Applied Surface Science299 : p. 12-18, 2014
    • 286 FangD.L. , et al., "Homogeneous growth of nano-sized beta-Ni ( OH ) ( 2 ) on reduced graphene oxide for highperformance supercapacitors", Electrochimica Acta81 : p. 321-329, 2012
    • 287 236 . YuanH.L. , et al., "Low-Temperature Preparation of Superparamagnetic CoFe ( 2 ) O ( 4 ) Microspheres with High Saturation Magnetization", Nanoscale Res Lett5 ( 11 ) : p. 1817-1821, 2010
    • 288 191 . RanjaniM. , et al., "Ni-Co alloy nanostructures anchored on mesoporous silica nanoparticles for nonenzymatic glucose sensor applications", Rsc Advances5 ( 71 ) : p. 57804-57814, 2015
    • 289 Wu , Y.Y. , et al., "Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheet-Built , Hollow Ni3S2- Based Electrocatalyst", Advanced Functional Materials26 ( 27 ) : p. 4839-4847, 2016
    • 290 112 . Ferrari , A.C., "Raman spectroscopy of graphene and graphite : Disorder , electron-phonon coupling , doping and nonadiabatic effects", Solid State Communications143 ( 1-2 ) : p. 47-57, 2007
    • 291 446 . WuK.H. , et al., "Structural Origin of the Activity in Mn3O4-Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction", ChemSusChem8 ( 19 ) : p. 3331-9, 2015
    • 292 158 . TangD. , et al., "Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation", ACS Appl Mater Interfaces6 ( 10 ) : p. 7918-25, 2014
    • 293 224 . DuS. , et al., "Co 3 O 4 nanosheets as a high-performance catalyst for oxygen evolution proceeding via a double two-electron process", Chemical Communications52 ( 40 ) : p. 6705-6708, 2016
    • 294 Borah , M. , et al., "Few layer graphene derived from wet ball milling of expanded graphite and few layer graphene based polymer composite", Materials Focus3 ( 4 ) : p. 300-309, 2014
    • 295 210 . MaT.Y. , et al., "Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes", J Am Chem Soc136 ( 39 ) : p. 13925-31, 2014
    • 296 WangX. , et al., "3D Nest-Like Architecture of Core-Shell CoFe2O4 @ 1T/2H-MoS2 Composites with Tunable Microwave Absorption Performance", ACS Appl Mater Interfaces12 ( 9 ) : p. 11252-11264, 2020
    • 297 264 . Abd-ElrahimD.M . Chun, "Fabrication of efficient nanostructured Co3O4-Graphene bifunctional catalysts : Oxygen evolution , hydrogen evolution", 46 ( 15 ) : p. 23479-23498, 2020
    • 298 193 . LiX.Y. , et al., "Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting", Journal of Materials Chemistry A4 ( 9 ) : p. 3204-3209, 2016
    • 299 Badri , M.A.S. , et al., "Green synthesis of few-layered graphene from aqueous processed graphite exfoliation for graphene thin film preparation", Materials Chemistry and Physics193 : p. 212-219, 2017
    • 300 117 . ParabA.D. , et al., "Molecular-Level Insights into Biologically Driven Graphite Exfoliation for the Generation of Graphene in Aqueous Media", Journal of Physical Chemistry C124 ( 3 ) : p. 2219-2228, 2020
    • 301 338 . UpadhyayR.K.N. SoinS.S. Roy, "Role of graphene/metal oxide composites as photocatalysts , adsorbents and disinfectants in water treatment : a review", Rsc Advances4 ( 8 ) : p. 3823-3851, 2014
    • 302 241 . BarakatN.A.M. , et al., "Synthesis and optical properties of two cobalt oxides ( CoO and Co3O4 ) nanofibers produced by electrospinning process", Journal of Physical Chemistry C112 ( 32 ) : p. 12225-12233, 2008
    • 303 262 . Abd-ElrahimD.-M. Chun, "A.G.Nanosized Co3O4 ? MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium", Journal of Alloys and Compounds2021 . 853 : p. 156946, null
    • 304 LiH. , et al., "Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies", Nature materials15 ( 1 ) : p. 48-53, 2016
    • 305 289 . NethravathiM. Rajamathi, "C.Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide", Carbon46 ( 14 ) : p. 1994-1998, 2008
    • 306 253 . LiuM.S. HeW. Chen, "Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection", Nanoscale6 ( 20 ) : p. 11769-76, 2014
    • 307 268 . RathnasamyR. , et al., "Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications", Journal of Materials Science : Materials in Electronics28 ( 14 ) : p. 10374-10381, 2017
    • 308 409 . BrandtR.E. , et al., "Identifying defect-tolerant semiconductors with high minority-carrier lifetimes : beyond hybrid lead halide perovskites", Mrs Communications5 ( 2 ) : p. 265-275, 2015
    • 309 OthmanA. , et al., "Mn-doped ZnO nanocrystals synthesized by sonochemical method : Structural , photoluminescence , and magnetic properties", Materials Science and Engineering : B219 : p. 1-9, 2017
    • 310 281 . OthmanA.A. , et al., "Mn-doped ZnO nanocrystals synthesized by sonochemical method : Structural , photoluminescence , and magnetic properties", Materials Science and Engineering B-Advanced Functional Solid-State Materials219 : p. 1-9, 2017
    • 311 286 . ReddyA.J. , et al., "Structural , optical and EPR studies on ZnO : Cu nanopowders prepared via low temperature solution combustion synthesis", Journal of Alloys and Compounds509 ( 17 ) : p. 5349-5355, 2011
    • 312 ZhangP. , et al., "Two-dimensional materials for miniaturized energy storage devices : from individual devices to smart integrated systems", Chem Soc Rev47 ( 19 ) : p. 7426-7451, 2018
    • 313 197 . IndraA. , et al., "Unification of catalytic water oxidation and oxygen reduction reactions : amorphous beat crystalline cobalt iron oxides", J Am Chem Soc136 ( 50 ) : p. 17530-6, 2014
    • 314 388 . SiC. , et al., "Co3 [ Fe ( CN ) 6 ] 2 nanocube derived architecture of Co , Fe co-doped MoS2 nanosheets for efficient water electrolysis", Electrochimica Acta309 : p. 116-124, 2019
    • 315 275 . YusoffN. , et al., "Core-shell Fe3O4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting", Ceramics International41 ( 3 ) : p. 5117-5128, 2015
    • 316 167 . MohammedM.M.M .D.M . Chun, "Electrochemical Performance of Few-Layer Graphene Nano-Flake Supercapacitors Prepared by the Vacuum Kinetic Spray Method", Coatings8 ( 9 ) : p. 302, 2018
    • 317 Tang , C. , et al., "NiSe Nanowire Film Supported on Nickel Foam : An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting", Angew Chem Int Ed Engl54 ( 32 ) : p. 9351-5, 2015
    • 318 Chen , S. , et al., "Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugar- Assisted Mechanochemical Exfoliation", Adv Mater31 ( 10 ) : p. e1804810, 2019
    • 319 LiuJ. , et al., "The Flexibility of an Amorphous Cobalt Hydroxide Nanomaterial Promotes the Electrocatalysis of Oxygen Evolution Reaction", Small14 ( 17 ) : p. e1703514, 2018
    • 320 Chen , S. , et al., "Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution", Angew Chem Int Ed Engl52 ( 51 ) : p. 13567-70, 2013
    • 321 175 . YanJ. , et al., "Advanced Asymmetric Supercapacitors Based on Ni ( OH ) 2/Graphene and Porous Graphene Electrodes with High Energy Density", Advanced Functional Materials22 ( 12 ) : p. 2632-2641, 2012
    • 322 233 . LiJ. , et al., "Effect of TiO 2 crystal structure on the catalytic performance of Co 3 O 4/TiO 2 catalyst for lowtemperature CO oxidation", Catalysis Science & Technology4 ( 5 ) : p. 1268-1275, 2014
    • 323 161 . KimK. , et al., "Investigation of Varying Particle Sizes of Dry-Deposited WO 3 Particles in Relation to Performance of Electrochromic Cell", International journal of precision engineering and manufacturinggreen technology5 ( 3 ) : p. 409-414, 2018
    • 324 270 . FveroV.O. , et al., "Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes", Journal of materials science53 ( 9 ) : p. 6719-6728, 2018
    • 325 273 . TayebiM. , et al., "Photocorrosion suppression and photoelectrochemical ( PEC ) enhancement of ZnO via hybridization with graphene nanosheets", Applied Surface Science502 : p. 144189, 2020
    • 326 Liu , H. , et al., "Production of mono- to few-layer MoS2 nanosheets in isopropanol by a salt-assisted direct liquid-phase exfoliation method", J Colloid Interface Sci515 : p. 27-31, 2018
    • 327 320 . MazhdiM. , et al., "A study on optical , photoluminescence and thermoluminescence properties of ZnO and Mn doped-ZnO nanocrystalline particles", Optik124 ( 20 ) : p. 4128-4133, 2013
    • 328 176 . YanJ. , et al., "Fabrication and electrochemical performances of hierarchical porous Ni ( OH ) ( 2 ) nanoflakes anchored on graphene sheets", Journal of Materials Chemistry22 ( 23 ) : p. 11494-11502, 2012
    • 329 Shi , H.Y. , et al., "Polyethylenimine-assisted exfoliation of h-BN in aqueous media for anticorrosive reinforcement of waterborne epoxy coating", Progress in Organic Coatings142 : p. 105591, 2020
    • 330 222 . ZhongH.H. , et al., "Surfactant-Assisted Fabrication of Cubic Cobalt Oxide Hybrid Hollow Spheres as Catalysts for the Oxygen Reduction Reaction", Chemelectrochem5 ( 16 ) : p. 2192-2198, 2018
    • 331 254 . EnsafiA.A.M. Jafari-AslB. Rezaei, "A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide-Co3O4 nanocomposite", Talanta103 : p. 322-9, 2013
    • 332 Bourlinos , A.B. , et al., "Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes", Solid State Communications149 ( 47-48 ) : p. 2172-2176, 2009
    • 333 396 . XiongX. , et al., "Flexible membranes of MoS 2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries", Scientific reports5 ( 1 ) : p. 1-6, 2015
    • 334 XunS. , et al., "MOF-derived cobalt oxides nanoparticles anchored on CoMoO4 as a highly active electrocatalyst for oxygen evolution reaction", Journal of Alloys and Compounds806 : p. 1097-1104, 2019
    • 335 331 . SchwarzburgF. Willig, "K.Modeling of electrical transients in the semiconductor/electrolyte cell for photogeneration of charge carriers in the bulk", Journal of Physical Chemistry B101 ( 14 ) : p. 2451- 2458, 1997
    • 336 444 . QiuY. , et al., "One-dimensional hierarchical MoO 2 ? MoS x hybrids as highly active and durable catalysts in the hydrogen evolution reaction", Dalton Transactions47 ( 17 ) : p. 6041-6048, 2018
    • 337 308 . SharmaR. , et al., "ZnO anchored graphene hydrophobic nanocomposite-based bulk heterojunction solar cells showing enhanced short-circuit current", Journal of Materials Chemistry C2 ( 38 ) : p. 8142-8151, 2014
    • 338 276 . ChandrasekaranS. , et al., "Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting", Chemical Engineering Journal290 : p. 465-476, 2016
    • 339 384 . ZhangJ. , et al., "Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall ? water ? splitting activity", Angewandte Chemie International Edition55 ( 23 ) : p. 6702-6707, 2016
    • 340 361 . CaoB.Q. , et al., "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates", Journal of Applied Physics99 ( 7 ) : p. 073516, 2006
    • 341 LongX. , et al., "A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction", Angew Chem Int Ed Engl53 ( 29 ) : p. 7584-8, 2014
    • 342 Kim , M.S. , et al., "Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell ( DSSC ) using a nanoparticle deposition system ( NPDS )", Journal of Nanoscience and Nanotechnology12 ( 4 ) : p. 3384-3388, 2012
    • 343 379 . Yan, "K. and Y. Lu , Direct Growth of MoS2 Microspheres on Ni Foam as a Hybrid Nanocomposite Efficient for Oxygen Evolution Reaction", Small12 ( 22 ) : p. 2975-81, 2016
    • 344 Malik , B. , et al., "Magnetic CoPt nanoparticle-decorated ultrathin Co ( OH ) ( 2 ) nanosheets : an efficient bifunctional water splitting catalyst", Catalysis Science & Technology7 ( 12 ) : p. 2486-2497, 2017
    • 345 187 . Sklason , E. , et al., "Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations", The Journal of Physical Chemistry C114 ( 42 ) : p. 18182- 18197, 2010
    • 346 Kumar , G.G.G. AmalaS.M . Gowtham, "Recent advancements , key challenges and solutions in nonenzymatic electrochemical glucose sensors based on graphene platforms", Rsc Advances7 ( 59 ) : p. 36949-36976, 2017
    • 347 386 . YangR. , et al., "Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media", Applied Catalysis B : Environmental253 : p. 131-139, 2019
    • 348 266 . ChaudharyD. , et al., "ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting", Journal of Photochemistry and Photobiology A : Chemistry351 : p. 154-161, 2018
    • 349 218 . KogularasuS. , et al., "3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide", Sensors and Actuators B : Chemical253 : p. 773- 783, 2017
    • 350 430 . JayabalanT.M. ManickamS.N . Mohamed, "NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production", Renewable Energy154 : p. 1144-1152, 2020
    • 351 337 . MagdalaneC.M. , et al., "Self-cleaning mechanism of synthesized SnO2/TiO2 nanostructure for photocatalytic activity application for waste water treatment", Surfaces and Interfaces17 : p. 100346, 2019
    • 352 319 . OthmanA.A. , et al., OthmanA. , et al., "Sonochemically synthesized ZnO nanosheets and nanorods : Annealing temperature effects on the structure , and optical properties", Ceramics International43 ( 1 ) : p. 527-533, 2017
    • 353 356 . AhmadM. , et al., "A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light", Applied Surface Science274 : p. 273-281, 2013
    • 354 375 . Conway, "B. and T. Liu , Behaviour of surface intermediate states in anodic O2 evolution electrocatalysis at Co3O4 on Ni and Ti substrates", Berichte der Bunsengesellschaft f ? r physikalische Chemie91 ( 4 ) : p. 461-469, 1987
    • 355 250 . LiS.J. , et al., "Electrochemical Synthesis of a Binary Mn-Co Oxides Decorated Graphene Nanocomposites for Application in Nonenzymatic H2O2 Sensing", International Journal of Electrochemical Science12 ( 7 ) : p. 6566-6576, 2017
    • 356 207 . RaniG.J .M.J. Rajan, "Reduced graphene oxide/ZnFe 2 O 4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye", Research on Chemical Intermediates43 ( 4 ) : p. 2669-2690, 2017
    • 357 211 . FiazM. , et al., "One pot solvothermal synthesis of Co3O4 @ UiO-66 and CuO @ UiO-66 for improved current density towards hydrogen evolution reaction", Materials Chemistry and Physicsp. 122320, 2019
    • 358 190 . FujimuraT. , et al., "Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes", Electrochemistry Communications101 : p. 43-46, 2019
    • 359 382 . DaiX. ,al., "Co-Doped MoS ( 2 ) Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution", ACS Appl Mater Interfaces7 ( 49 ) : p. 27242-53, 2015
    • 360 169 . MohammedM.M.M .D.M . Chun, "Deposition of Ni ( OH ) ( 2 ) on nickel substrate using vacuum kinetic spray and its application to high-performance supercapacitor", Journal of Materials Science-Materials in Electronics30 ( 18 ) : p. 17481-17490, 2019
    • 361 HuB.L. , et al., "Fabrication of Ni ( OH ) ( 2 ) nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors", Electrochimica Acta107 : p. 339-342, 2013
    • 362 Li , D.Q. , et al., "Influence of morphology and interfacial interaction of TiO2-Graphene nanocomposites on the visible light photocatalytic performance", Journal of Solid State Chemistry286 : p. 121301, 2020
    • 363 225 . ZhaoY. , et al., "Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as highperformance anode material for Li-ion batteries", Electrochimica Acta213 : p. 98-106, 2016
    • 364 208 . SalamonJ. , et al., "One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine", Biosens Bioelectron64 : p. 269-76, 2015
    • 365 260 . MohammedM.M.M.A.G. Abd-ElrahimD.M . Chun, "One-step deposition of a Ni ( OH ) 2-graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor", Materials Chemistry and Physics244 : p. 122701, 2020
    • 366 Akedo , J., "Room temperature impact consolidation ( RTIC ) of fine ceramic powder by aerosol deposition method and applications to microdevices", Journal of Thermal Spray Technology17 ( 2 ) : p. 181-198, 2008
    • 367 Wu , Z. , et al., "Electrostatic induced stretch growth of homogeneous beta-Ni ( OH ) 2 on graphene with enhanced high-rate cycling for supercapacitors", Sci Rep4 : p. 3669, 2014
    • 368 Kumar , R. , et al., "Microwave-assisted synthesis of Mn3O4-Fe2O3/Fe3O4 @ rGO ternary hybrids and electrochemical performance for supercapacitor electrode", Diamond and Related Materials101 : p. 107622, 2020
    • 369 163 . Al NasimM.N.E.A .D.-M. Chun, "Substrate-dependent deposition behavior of graphite particles drysprayed at room temperature using a nano-particle deposition system", Surface and Coatings Technology309 : p. 172-178, 2017
    • 370 109 . LeiW.W. , et al., "Boron nitride colloidal solutions , ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization", Nature Communications6 ( 1 ) : p. 1-8, 2015
    • 371 143 . XuQ.C. , et al., "Heterogeneous interface engineered atomic configuration on ultrathin Ni ( OH ) ( 2 ) /Ni3S2 nanoforests for efficient water splitting", Applied Catalysis B-Environmental242 : p. 60-66, 2019
    • 372 Kortidis , I. , et al., "Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods", Sensors and Actuators B-Chemical285 : p. 92-107, 2019
    • 373 Yu , M.H. , et al., "Engineering Thin MoS2 Nanosheets on TiN Nanorods : Advanced Electrochemical Capacitor Electrode and Hydrogen Evolution Electrocatalyst", Acs Energy Letters2 ( 8 ) : p. 1862-1868, 2017
    • 374 142 . DuX.Q. , et al., "Controlled synthesis of Ni ( OH ) ( 2 ) /Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting", Journal of Materials Chemistry A6 ( 16 ) : p. 6938-6946, 2018
    • 375 420 . ChuY. , et al., "Embedding MnO @ Mn3O4 Nanoparticles in an N ? Doped ? Carbon Framework Derived from Mn ? Organic Clusters for Efficient Lithium Storage", Advanced Materials30 ( 6 ) : p. 1704244, 2018
    • 376 Polyakova , E.Y. , et al., "Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Studies of Graphene Films Prepared by Sonication-Assisted Dispersion", Acs Nano5 ( 8 ) : p. 6102-6108, 2011
    • 377 Dong , Q.Q. , et al., "Efficient approach to iron/nitrogen co-doped graphene materials as efficient electrochemical catalysts for the oxygen reduction reaction", Journal of Materials Chemistry A3 ( 15 ) : p. 7767-7772, 2015
    • 378 WangH.Q. , et al., "Microstructural evolution and oxidation resistance of polyacrylonitrile-based carbon fibers doped with boron by the decomposition of B4C", Carbon56 : p. 296-308, 2013
    • 379 456 . YangS.L. , et al., "One-pot synthesis of Mn3O4 nanoparticles decorated with nitrogen-doped reduced graphene oxide for sensitive nonenzymatic glucose sensing", Journal of Electroanalytical Chemistry755 : p. 15-21, 2015
    • 380 LiuM.J. , et al., "One-step chemical exfoliation of graphite to similar to 100 % few-layer graphene with high quality and large size at ambient temperature", Chemical Engineering Journal355 : p. 181-185, 2019
    • 381 Mohammed , M.M.M.A.G. Abd-ElrahimD.M . Chun, "One-step deposition of a Ni ( OH ) ( 2 ) -graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor", Materials Chemistry and Physics244 : p. 122701, 2020
    • 382 Han , Y.F. , et al., "Controlled synthesis , characterization , and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15", Journal of Physical Chemistry B110 ( 48 ) : p. 24450-24456, 2006
    • 383 Duan , Y. , et al., "Efficient and inexpensive MPCVD method to synthesize Co3O4/MoS2 heterogeneous composite materials with high stability for supercapacitors", Journal of Materials Research and Technology- Jmr, null
    • 384 244 . LiuJ. , et al., "Mutually beneficial Co3O4 @ MoS2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting", Journal of Materials Chemistry A6 ( 5 ) : p. 2067-2072, 2018
    • 385 150 . LeeJ.W. , et al., "Non-aqueous approach to the preparation of reduced graphene oxide/alpha-Ni ( OH ) 2 hybrid composites and their high capacitance behavior", Chem Commun ( Camb )47 ( 22 ) : p. 6305-7, 2011
    • 386 ChenT. , et al., "Aldehyde reduced Co3O4 to form oxygen vacancy and enhance the electrochemical performance for oxygen evolution reaction and supercapacitor", Nanotechnology, 2019
    • 387 342 . DivbandB. , et al., "Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation", Applied Surface Science284 : p. 80-86, 2013
    • 388 392 . Abd-Elrahim, "A.G. and D.-M. Chun , Fabrication of efficient nanostructured Co3O4-Graphene bifunctional catalysts : Oxygen evolution , hydrogen evolution", and H2O2 sensing . Ceramics International, 2020
    • 389 228 . Abd-ElrahimA.M.M . MohammedD.-M. Chun, "Composition dependent electrocatalytic activity of Ni ( OH ) 2-graphene hybrid catalyst deposited by one-step vacuum kinetic spray technique", Materials Chemistry and Physicsp. 122675, 2020
    • 390 261 . Abd-ElrahimA.G.M.M.M . MohammedD.M . Chun, "Composition dependent electrocatalytic activity of Ni ( OH ) 2-graphene hybrid catalyst deposited by one-step vacuum kinetic spray technique", Materials Chemistry and Physics244 : p. 122675, 2020
    • 391 SutkarV.S .P.R . Gogate, "Design aspects of sonochemical reactors : Techniques for understanding cavitational activity distribution and effect of operating parameters", Chemical Engineering Journal155 ( 1-2 ) : p. 26-36, 2009
    • 392 ZengF.Y. , et al., "Facile construction of Mn3O4-MnO2 hetero-nanorods/graphene nanocomposite for highly sensitive electrochemical detection of hydrogen peroxide", Electrochimica Acta196 : p. 587-596, 2016
    • 393 238 . JiangY. , et al., "A cobalt-nitrogen complex on N-doped three-dimensional graphene framework as a highly efficient electrocatalyst for oxygen reduction reaction", Nanoscale6 ( 24 ) : p. 15066-72, 2014
    • 394 339 . YoussefZ. , et al., "Dye-sensitized nanoparticles for heterogeneous photocatalysis : Cases studies with TiO2 , ZnO , fullerene and graphene for water purification", Dyes and Pigments159 : p. 49-71, 2018
    • 395 205 . SuryantoB.H.X. LuC. Zhao, "Layer-by-layer assembly of transparent amorphous Co 3 O 4 nanoparticles/graphene composite electrodes for sustained oxygen evolution reaction", Journal of Materials Chemistry A1 ( 41 ) : p. 12726-12731, 2013
    • 396 397 . LiuJ. , et al., "Mutually beneficial Co 3 O 4 @ MoS 2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting", Journal of Materials Chemistry A6 ( 5 ) : p. 2067-2072, 2018
    • 397 Jahangir , I. , et al., "Richardson constant and electrostatics in transfer-free CVD grown few-layer MoS2/graphene barristor with Schottky barrier modulation > 0.6 eV", Applied Physics Letters111 ( 14 ) : p. 142101, 2017
    • 398 Masjedi-AraniM. , et al., "CdSnO3-graphene nanocomposites : Ultrasonic synthesis using glucose as capping agent and characterization for electrochemical hydrogen storage", Ultrasonics Sonochemistry61 : p. 104840, 2020
    • 399 309 . HuD. , et al., "Polymer solution-assisted assembly of hierarchically nanostructured ZnO onto 2D neat graphene sheets with excellent photocatalytic performance", Journal of Alloys and Compounds843 : p. 156030, 2020
    • 400 359 . NalajalaN. , et al., "Why the thin film form of a photocatalyst is better than the particulate form for direct solar-to-hydrogen conversion : a poor man 's approach", Rsc Advances9 ( 11 ) : p. 6094-6100, 2019
    • 401 364 . HuangC.Y. , et al., "p-GaN/n-ZnO nanorods : the use of graphene nanosheets composites to increase charge separation in self-powered visible-blind UV photodetectors", Nanotechnology29 ( 44 ) : p. 445201, 2018
    • 402 413 . Abd-Elrahim, "A.G. and D.-M. Chun , Facile one-step deposition of ZnO-graphene nanosheets hybrid photoanodes for enhanced photoelectrochemical water splitting", Journal of Alloys and Compounds2021 : p. 159430, null
    • 403 164 . Al NasimM.N.E.A ., "D.-M. Chun , Formation of few-layer graphene flake structures from graphite particles during thin film coating using dry spray deposition method", Thin Solid Films622 : p. 34-40, 2017
    • 404 353 . VinothkannanM. , et al., "One-pot green synthesis of reduced graphene oxide ( RGO ) /Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation", Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy136 : p. 256-264, 2015
    • 405 203 . RischM. , et al., "Water Oxidation by Electrodeposited Cobalt Oxides ? Role of Anions and Redox ? Inert Cations in Structure and Function of the Amorphous Catalyst", ChemSusChem5 ( 3 ) : p. 542-549, 2012
    • 406 258 . Abd-Elrahim, "A.G. and D.-M. Chun , Facile one-step deposition of Co3O4-MoS2 nanocomposites using a vacuum kinetic spray process for non-enzymatic H2O2 sensing", Surfaces and Interfaces21 : p. 100748, 2020
    • 407 Nasim , M. , et al., "Deposition mechanism of graphene flakes directly from graphite particles in the kinetic spray process studied using molecular dynamics simulation", Computational Materials Science169 : p. 109091, 2019
    • 408 445 . WuM. , et al., "Heterostructural composite of few ? layered MoS2/hexagonal MoO2 particles/graphene as anode material for highly reversible lithium/sodium storage", International Journal of Energy Research44 ( 1 ) : p. 518-527, 2020
    • 409 108 . ThangasamyM. Sathish, "P.Supercritical fluid processing : a rapid , one-pot exfoliation process for the production of surfactant-free hexagonal boron nitride nanosheets", Crystengcomm17 ( 31 ) : p. 5895- 5899, 2015
    • 410 Smith , R.D. , et al., "Water oxidation catalysis : electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron , cobalt , and nickel", J Am Chem Soc135 ( 31 ) : p. 11580-6, 2013
    • 411 Park , S.-I., "Fabrication of Electrochromic Device Using Nano-particle Deposition System and Its Response Time Modeling for Large-area ( 1m2 Class ) Application", Dept . of Mechanical Aerospace Engineering , Seoul National University, 2018
    • 412 325 . ParkC.J. LeeW.S . Chang, "Geometrical Separation of Defect States in ZnO Nanorods and Their Morphology-Dependent Correlation between Photoluminescence and Photoconductivity", Journal of Physical Chemistry C119 ( 29 ) : p. 16984-16990, 2015
    • 413 400 . WuP. , et al., "Electrochemical measurement of the flux of hydrogen peroxide releasing from RAW 264.7 macrophage cells based on enzyme-attapulgite clay nanohybrids", Biosensors and Bioelectronics26 ( 10 ) : p. 4012-4017, 2011
    • 414 Lin , T.Q. , et al., "Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene-sulfur composites for high-performance lithium-sulfur batteries", Energy & Environmental Science6 ( 4 ) : p. 1283-1290, 2013
    • 415 274 . MinY.L. , et al., "Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties . Diamond and Related Materials", 26 : p. 32-38, 2012
    • 416 Chun , D.M. , et al., "Nano-particle deposition system ( NPDS ) : Low energy solvent-free dry spray process for direct patterning of metals and ceramics at room temperature", International Journal of Precision Engineering and Manufacturing13 ( 7 ) : p. 1107-1112, 2012
    • 417 344 . Acedo-MendozaA.G. , et al., "Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts : The effect of copper loading and reaction temperature", Materials Science in Semiconductor Processing119 : p. 105257, 2020
    • 418 ChenD.Z. , et al., "Synergistic coupling of NiCo2O4 nanorods onto porous Co3O4 nanosheet surface for trifunctional glucose , hydrogen-peroxide sensors and supercapacitor", Electrochimica Acta330 : p. 135326, 2020
    • 419 227 . GawaliS.R. , et al., "Role of cobalt cations in short range antiferromagnetic Co 3 O 4 nanoparticles : a thermal treatment approach to affecting phonon and magnetic properties", Scientific reports8 ( 1 ) : p. 1-12, 2018
    • 420 Leon , V. , et al., "Exfoliation of graphite with triazine derivatives under ball-milling conditions : preparation of few-layer graphene via selective noncovalent interactions", ACS Nano8 ( 1 ) : p. 563-71, 2014
    • 421 ZhangJ.H. , et al., "Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction", Electrochimica Acta300 : p. 123-130, 2019
    • 422 377 . WuZ.X. , et al., "Facile preparation of carbon sphere supported molybdenum compounds ( P , C and S ) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes", Nano Energy32 : p. 511-519, 2017
    • 423 Kumar , G.R. , et al., "Shear-force-dominated dual-drive planetary ball milling for the scalable production of graphene and its electrocatalytic application with Pd nanostructures", Rsc Advances6 ( 24 ) : p. 20067- 20073, 2016
    • 424 Nia , Z., "al. , Smart photoactive soft materials for environmental cleaning and energy production through incorporation of nanophotocatalyst on polymers and textiles", Polymers for Advanced Technologies30 ( 2 ) : p. 235-253, 2019
    • 425 374 . ConwayB.E .T.C . Liu, "Characterization of Electrocatalysis in the Oxygen Evolution Reaction at Platinum by Evaluation of Behavior of Surface Intermediate States at the Oxide Film", Langmuir6 ( 1 ) : p. 268-276, 1990
    • 426 324 . WangJ. , et al., "Insight into charge carrier separation and solar-light utilization : rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution", Journal of Colloid and Interface Science564 : p. 322-332, 2020
    • 427 152 . ChenX. , et al., "One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/alpha- Ni ( OH ) ( 2 ) composites for high performance electrochemical supercapacitor", Journal of Power Sources243 : p. 555-561, 2013
    • 428 263 . Abd-Elrahim, "A.G. and D.-M. ChunRoom-temperature deposition of ZnO-graphene nanocomposite hybrid photocatalysts for improved visible-light-driven degradation of methylene blue", Ceramics International , 2021 . 47 ( 9 ) : p. 12812-12825, null
    • 429 Osman , M.A.A.G. Abd-ElrahimA.A. Othman, "Identification of trapping and recombination levels , structure , morphology , photoluminescence and optical absorption behavior of alloyed ZnxCd1-xS quantum dots", Journal of Alloys and Compounds722 : p. 344-357, 2017
    • 430 Hassan , M. , et al., "High performance pliable supercapacitor fabricated using activated carbon nanospheres intercalated into boron nitride nanoplates by pulsed laser ablation technique", Arabian Journal of Chemistry13 ( 8 ) : p. 6696-6707, 2020
    • 431 188 . DuX.Q.H. SuX.S . Zhang, "Metal-Organic Framework-Derived Cu-Doped Co9S8 Nanorod Array with Less Low-Valence Co Sites as Highly Efficient Bifunctional Electrodes for Overall Water Splitting", Acs Sustainable Chemistry & Engineering7 ( 19 ) : p. 16917-16926, 2019
    • 432 399 . KimM.I. , et al., "A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam", Advanced Functional Materials21 ( 15 ) : p. 2868-2875, 2011
    • 433 394 . MuthurasuA.V. MaruthapandianH.Y . Kim, "Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction", Applied Catalysis B : Environmental248 : p. 202-210, 2019
    • 434 408 . PeiY. , et al., "Ultrafast one-pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide", Anal Chim Acta1059 : p. 49-58, 2019
    • 435 Pei , Y.J. , et al., "Ultrafast one-pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide", Analytica Chimica Acta1059 : p. 49-58, 2019
    • 436 416 . KuoC.C.W.J . LanC.H . Chen, "Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials : highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide", Nanoscale6 ( 1 ) : p. 334-41, 2014
    • 437 306 . Zhou, "H. and Z. Li , Synthesis of nanowires , nanorods and nanoparticles of ZnO through modulating the ratio of water to methanol by using a mild and simple solution method", Materials chemistry and physics89 ( 2-3 ) : p. 326-331, 2005
    • 438 245 . HouY. , et al., "Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil : an efficient 3D electrode for overall water splitting", Energy & Environmental Science9 ( 2 ) : p. 478-483, 2016
    • 439 165 . HongS.T. , et al., "Combination of nano-particle deposition system and friction stir spot welding for fabrication of carbon/aluminum metal matrix composite joints of dissimilar aluminum alloys", Cirp Annals- Manufacturing Technology66 ( 1 ) : p. 261-264, 2017
    • 440 Jeon , I.Y. , et al., "Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction", Journal of the American Chemical Society135 ( 4 ) : p. 1386-1393, 2013
    • 441 Chun , D.-M. , et al., "Effect of stand-off distance for cold gas spraying of fine ceramic particles ( < 5 μm ) under low vacuum and room temperature using nano-particle deposition system ( NPDS )", Surface and Coatings Technology206 ( 8-9 ) : p. 2125-2132, 2012
    • 442 357 . AtchudanR. , et al., "Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation", Journal of Photochemistry and Photobiology B-Biology162 : p. 500-510, 2016
    • 443 234 . MuthurasuA. , S.V.S . MersV. Ganesh, "Nitrogen doped graphene quantum dots ( N-GQDs ) /Co3O4 composite material as an efficient bi-functional electrocatalyst for oxygen , evolution and-oxygen reduction reactions", International Journal of Hydrogen Energy43 ( 9 ) : p. 4726-4737, 2018
    • 444 Gouadec , G.P. Colomban, "Raman Spectroscopy of nanomaterials : How spectra relate to disorder , particle size and mechanical properties . Progress in Crystal Growth and Characterization of Materials", 53 ( 1 ) : p. 1-56, 2007
    • 445 278 . OthmanA.A. , et al., "Influence of Cu doping on structural , morphological , photoluminescence , and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method", Journal of Alloys and Compounds683 : p. 399-411, 2016
    • 446 346 . El-ShazlyA. , et al., "Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-Precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes", Journal of environmental chemical engineering4 ( 3 ) : p. 3177-3184, 2016
    • 447 IslamS.E. , et al., "Facile and Cost-Efficient Synthesis of Quasi-0D/2D ZnO/MoS2 Nanocomposites for Highly Enhanced Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants and Antibiotics", Chemistry24 ( 37 ) : p. 9305-9315, 2018
    • 448 240 . ZhangL. , et al., "Roughening of windmill-shaped spinel Co 3 O 4 microcrystals grown on a flexible metal substrate by a facile surface treatment to enhance their performance in the oxidation of water", RSC Advances4 ( 82 ) : p. 43357-43365, 2014
    • 449 265 . AngaiahS. , et al., "A facile polyvinylpyrrolidone assisted solvothermal synthesis of zinc oxide nanowires and nanoparticles and their influence on the photovoltaic performance of dye sensitized solar cell", ES Energy & Environment4 ( 2 ) : p. 59-65, 2019
    • 450 BarakatM.A. , et al., "Design of ternary Ni ( OH ) ( 2 ) /graphene oxide/TiO2 nanocomposite for enhanced photocatalytic degradation of organic , microbial contaminants , and aerobic digestion of dairy wastewater", Journal of Cleaner Production258 : p. 120588, 2020
    • 451 136 . DuX.G. MaX. Zhang, "Experimental and theoretical understanding on electrochemical activation processes of nickel selenide for excellent water splitting performance : comparing the electrochemical performances with M ?", NiSe ( M= Co , Cu , and VACS Sustainable Chemistry & Engineering, 2019
    • 452 219 . HeliJ. Pishahang, "H.Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes : Synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide", Electrochimica Acta123 : p. 518-526, 2014
    • 453 WeidlerN. , et al., "X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiO x , NiO x ( OH ) y , and CoNiO x ( OH ) y : Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction", The Journal of Physical Chemistry C121 ( 12 ) : p. 6455- 6463, 2017
    더보기

    분석정보

    View

    상세정보조회

    0

    usage

    원문다운로드

    0

    대출신청

    0

    복사신청

    0

    EDDS신청

    0

    동일 주제 내 활용도 TOP

      더보기

        연도별 연구동향

        연도별 활용동향

        연관논문

          연구자 네트워크 맵

          • 공동연구자 (0)

            • 유사연구자 (0) 활용도상위20명

              서지정보 내보내기(Export)

              닫기

              내보내기 형태를 선택하세요

              서지정보의 형식을 선택하세요

              참고문헌양식 참고문헌양식안내

              내책장담기

              닫기

              필수표가 있는 항목은 반드시 기재해 주셔야 합니다.

              동일자료를 같은 책장에 담을 경우 담은 시점만 최신으로 수정됩니다.

              새책장 만들기

              닫기

              필수표가 있는 항목은 반드시 기재해 주셔야 합니다.

              • 책장설명은 [내 책장/책장목록]에서 수정할 수 있습니다.

              • 책장카테고리 설정은 최소1개 ~ 최대3개까지 가능합니다.

              관심분야 검색

              닫기

              트리 또는 검색을 통해 관심분야를 선택 하신 후 등록 버튼을 클릭 하십시오.

                관심분야 검색 결과
                대분류 중분류 관심분야명
                검색결과가 없습니다.

                선택된 분야 (선택분야는 최소 하나 이상 선택 하셔야 합니다.)

                소장기관 정보

                닫기

                문헌복사 및 대출서비스 정책은 제공도서관 규정에 따라 상이할수 있음

                권호소장정보

                닫기

                  오류접수

                  닫기
                  오류접수

                  [ 논문 정보 ]

                    [ 신청자 정보 ]

                    •   -     -  
                    • ※ 개인정보 노출 방지를 위해 민감한 개인정보 내용은 가급적 기재를 자제하여 주시기 바랍니다.
                      (상담을 위해 불가피하게 개인정보를 기재하셔야 한다면, 가능한 최소한의 개인정보를 기재하여 주시기 바랍니다.)

                    • 작성하신 내용을 완료하시려면 [보내기] 버튼을, 수정하시려면 [수정]버튼을 눌러주세요.

                    오류 접수 확인

                    닫기
                    오류 접수 확인
                    • 고객님, 오류접수가 정상적으로 신청 되었습니다.

                      문의하신 내용은 3시간 이내에 메일로 답변을 드릴 수 있도록 하겠습니다.

                      다만, 고객센터 운영시간(평일 09:00 ~ 18:00) 이외에는

                      처리가 다소 지연될 수 있으니 이 점 양해 부탁 드립니다.

                      로그인 후, 문의하신 내용은 나의상담내역에서 조회하실 수 있습니다.

                    [접수 정보]

                    음성서비스 신청

                    닫기
                    음성서비스 신청

                    [ 논문 정보 ]

                      [ 신청자 정보 ]

                      •   -     -  
                      • 작성하신 내용을 완료하시려면 [신청] 버튼을, 수정하시려면 [수정]버튼을 눌러주세요.

                      음성서비스 신청 확인

                      닫기
                      음성서비스 신청 확인
                      • 서비스 신청이 완료되었습니다.

                        신청하신 내역에 대한 처리 완료 시 메일로 별도 안내 드리도록 하겠습니다.

                        음성서비스 신청 증가 등의 이유로 처리가 다소 지연될 수 있으니, 이 점 양해 부탁드립니다.

                        감합니다.

                      [신청 정보]

                      41061 대구광역시 동구 동내로 64(동내동1119) KERIS빌딩

                      고객센터 (평일: 09:00 ~ 18:00)1599-3122

                      Copyright© KERIS. ALL RIGHTS RESERVED

                      PC 버전 바로가기

                      이용약관

                      닫기

                      학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)

                      1. 제 1 장 총칙

                        1. 제 1 조 (목적)

                          • 이 약관은 한국교육학술정보원(이하 "교육정보원"라 함)이 제공하는 학술연구정보서비스의 웹사이트(이하 "서비스" 라함)의 이용에 관한 조건 및 절차와 기타 필요한 사항을 규정하는 것을 목적으로 합니다.
                        2. 제 2 조 (약관의 효력과 변경)

                          1. ① 이 약관은 서비스 메뉴에 게시하여 공시함으로써 효력을 발생합니다.
                          2. ② 교육정보원은 합리적 사유가 발생한 경우에는 이 약관을 변경할 수 있으며, 약관을 변경한 경우에는 지체없이 "공지사항"을 통해 공시합니다.
                          3. ③ 이용자는 변경된 약관사항에 동의하지 않으면, 언제나 서비스 이용을 중단하고 이용계약을 해지할 수 있습니다.
                        3. 제 3 조 (약관외 준칙)

                          • 이 약관에 명시되지 않은 사항은 관계 법령에 규정 되어있을 경우 그 규정에 따르며, 그렇지 않은 경우에는 일반적인 관례에 따릅니다.
                        4. 제 4 조 (용어의 정의)

                          이 약관에서 사용하는 용어의 정의는 다음과 같습니다.
                          1. ① 이용자 : 교육정보원과 이용계약을 체결한 자
                          2. ② 이용자번호(ID) : 이용자 식별과 이용자의 서비스 이용을 위하여 이용계약 체결시 이용자의 선택에 의하여 교육정보원이 부여하는 문자와 숫자의 조합
                          3. ③ 비밀번호 : 이용자 자신의 비밀을 보호하기 위하여 이용자 자신이 설정한 문자와 숫자의 조합
                          4. ④ 단말기 : 서비스 제공을 받기 위해 이용자가 설치한 개인용 컴퓨터 및 모뎀 등의 기기
                          5. ⑤ 서비스 이용 : 이용자가 단말기를 이용하여 교육정보원의 주전산기에 접속하여 교육정보원이 제공하는 정보를 이용하는 것
                          6. ⑥ 이용계약 : 서비스를 제공받기 위하여 이 약관으로 교육정보원과 이용자간의 체결하는 계약을 말함
                          7. ⑦ 마일리지 : RISS 서비스 중 마일리지 적립 가능한 서비스를 이용한 이용자에게 지급되며, RISS가 제공하는 특정 디지털 콘텐츠를 구입하는 데 사용하도록 만들어진 포인트
                      2. 제 2 장 서비스 이용 계약

                        1. 제 5 조 (이용계약의 성립)

                          1. ① 이용계약은 이용자의 이용신청에 대한 교육정보원의 이용 승낙에 의하여 성립됩니다.
                          2. ② 제 1항의 규정에 의해 이용자가 이용 신청을 할 때에는 교육정보원이 이용자 관리시 필요로 하는
                            사항을 전자적방식(교육정보원의 컴퓨터 등 정보처리 장치에 접속하여 데이터를 입력하는 것을 말합니다)
                            이나 서면으로 하여야 합니다.
                          3. ③ 이용계약은 이용자번호 단위로 체결하며, 체결단위는 1 이용자번호 이상이어야 합니다.
                          4. ④ 서비스의 대량이용 등 특별한 서비스 이용에 관한 계약은 별도의 계약으로 합니다.
                        2. 제 6 조 (이용신청)

                          1. ① 서비스를 이용하고자 하는 자는 교육정보원이 지정한 양식에 따라 온라인신청을 이용하여 가입 신청을 해야 합니다.
                          2. ② 이용신청자가 14세 미만인자일 경우에는 친권자(부모, 법정대리인 등)의 동의를 얻어 이용신청을 하여야 합니다.
                        3. 제 7 조 (이용계약 승낙의 유보)

                          1. ① 교육정보원은 다음 각 호에 해당하는 경우에는 이용계약의 승낙을 유보할 수 있습니다.
                            1. 1. 설비에 여유가 없는 경우
                            2. 2. 기술상에 지장이 있는 경우
                            3. 3. 이용계약을 신청한 사람이 14세 미만인 자로 친권자의 동의를 득하지 않았을 경우
                            4. 4. 기타 교육정보원이 서비스의 효율적인 운영 등을 위하여 필요하다고 인정되는 경우
                          2. ② 교육정보원은 다음 각 호에 해당하는 이용계약 신청에 대하여는 이를 거절할 수 있습니다.
                            1. 1. 다른 사람의 명의를 사용하여 이용신청을 하였을 때
                            2. 2. 이용계약 신청서의 내용을 허위로 기재하였을 때
                        4. 제 8 조 (계약사항의 변경)

                          이용자는 다음 사항을 변경하고자 하는 경우 서비스에 접속하여 서비스 내의 기능을 이용하여 변경할 수 있습니다.
                          1. ① 성명 및 생년월일, 신분, 이메일
                          2. ② 비밀번호
                          3. ③ 자료신청 / 기관회원서비스 권한설정을 위한 이용자정보
                          4. ④ 전화번호 등 개인 연락처
                          5. ⑤ 기타 교육정보원이 인정하는 경미한 사항
                      3. 제 3 장 서비스의 이용

                        1. 제 9 조 (서비스 이용시간)

                          • 서비스의 이용 시간은 교육정보원의 업무 및 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간(00:00-24:00)을 원칙으로 합니다. 다만 정기점검등의 필요로 교육정보원이 정한 날이나 시간은 그러하지 아니합니다.
                        2. 제 10 조 (이용자번호 등)

                          1. ① 이용자번호 및 비밀번호에 대한 모든 관리책임은 이용자에게 있습니다.
                          2. ② 명백한 사유가 있는 경우를 제외하고는 이용자가 이용자번호를 공유, 양도 또는 변경할 수 없습니다.
                          3. ③ 이용자에게 부여된 이용자번호에 의하여 발생되는 서비스 이용상의 과실 또는 제3자에 의한 부정사용 등에 대한 모든 책임은 이용자에게 있습니다.
                        3. 제 11 조 (서비스 이용의 제한 및 이용계약의 해지)

                          1. ① 이용자가 서비스 이용계약을 해지하고자 하는 때에는 온라인으로 교육정보원에 해지신청을 하여야 합니다.
                          2. ② 교육정보원은 이용자가 다음 각 호에 해당하는 경우 사전통지 없이 이용계약을 해지하거나 전부 또는 일부의 서비스 제공을 중지할 수 있습니다.
                            1. 1. 타인의 이용자번호를 사용한 경우
                            2. 2. 다량의 정보를 전송하여 서비스의 안정적 운영을 방해하는 경우
                            3. 3. 수신자의 의사에 반하는 광고성 정보, 전자우편을 전송하는 경우
                            4. 4. 정보통신설비의 오작동이나 정보 등의 파괴를 유발하는 컴퓨터 바이러스 프로그램등을 유포하는 경우
                            5. 5. 정보통신윤리위원회로부터의 이용제한 요구 대상인 경우
                            6. 6. 선거관리위원회의 유권해석 상의 불법선거운동을 하는 경우
                            7. 7. 서비스를 이용하여 얻은 정보를 교육정보원의 동의 없이 상업적으로 이용하는 경우
                            8. 8. 비실명 이용자번호로 가입되어 있는 경우
                            9. 9. 일정기간 이상 서비스에 로그인하지 않거나 개인정보 수집․이용에 대한 재동의를 하지 않은 경우
                          3. ③ 전항의 규정에 의하여 이용자의 이용을 제한하는 경우와 제한의 종류 및 기간 등 구체적인 기준은 교육정보원의 공지, 서비스 이용안내, 개인정보처리방침 등에서 별도로 정하는 바에 의합니다.
                          4. ④ 해지 처리된 이용자의 정보는 법령의 규정에 의하여 보존할 필요성이 있는 경우를 제외하고 지체 없이 파기합니다.
                          5. ⑤ 해지 처리된 이용자번호의 경우, 재사용이 불가능합니다.
                        4. 제 12 조 (이용자 게시물의 삭제 및 서비스 이용 제한)

                          1. ① 교육정보원은 서비스용 설비의 용량에 여유가 없다고 판단되는 경우 필요에 따라 이용자가 게재 또는 등록한 내용물을 삭제할 수 있습니다.
                          2. ② 교육정보원은 서비스용 설비의 용량에 여유가 없다고 판단되는 경우 이용자의 서비스 이용을 부분적으로 제한할 수 있습니다.
                          3. ③ 제 1 항 및 제 2 항의 경우에는 당해 사항을 사전에 온라인을 통해서 공지합니다.
                          4. ④ 교육정보원은 이용자가 게재 또는 등록하는 서비스내의 내용물이 다음 각호에 해당한다고 판단되는 경우에 이용자에게 사전 통지 없이 삭제할 수 있습니다.
                            1. 1. 다른 이용자 또는 제 3자를 비방하거나 중상모략으로 명예를 손상시키는 경우
                            2. 2. 공공질서 및 미풍양속에 위반되는 내용의 정보, 문장, 도형 등을 유포하는 경우
                            3. 3. 반국가적, 반사회적, 범죄적 행위와 결부된다고 판단되는 경우
                            4. 4. 다른 이용자 또는 제3자의 저작권 등 기타 권리를 침해하는 경우
                            5. 5. 게시 기간이 규정된 기간을 초과한 경우
                            6. 6. 이용자의 조작 미숙이나 광고목적으로 동일한 내용의 게시물을 10회 이상 반복하여 등록하였을 경우
                            7. 7. 기타 관계 법령에 위배된다고 판단되는 경우
                        5. 제 13 조 (서비스 제공의 중지 및 제한)

                          1. ① 교육정보원은 다음 각 호에 해당하는 경우 서비스 제공을 중지할 수 있습니다.
                            1. 1. 서비스용 설비의 보수 또는 공사로 인한 부득이한 경우
                            2. 2. 전기통신사업법에 규정된 기간통신사업자가 전기통신 서비스를 중지했을 때
                          2. ② 교육정보원은 국가비상사태, 서비스 설비의 장애 또는 서비스 이용의 폭주 등으로 서비스 이용에 지장이 있는 때에는 서비스 제공을 중지하거나 제한할 수 있습니다.
                        6. 제 14 조 (교육정보원의 의무)

                          1. ① 교육정보원은 교육정보원에 설치된 서비스용 설비를 지속적이고 안정적인 서비스 제공에 적합하도록 유지하여야 하며 서비스용 설비에 장애가 발생하거나 또는 그 설비가 못쓰게 된 경우 그 설비를 수리하거나 복구합니다.
                          2. ② 교육정보원은 서비스 내용의 변경 또는 추가사항이 있는 경우 그 사항을 온라인을 통해 서비스 화면에 공지합니다.
                        7. 제 15 조 (개인정보보호)

                          1. ① 교육정보원은 공공기관의 개인정보보호에 관한 법률, 정보통신이용촉진등에 관한 법률 등 관계법령에 따라 이용신청시 제공받는 이용자의 개인정보 및 서비스 이용중 생성되는 개인정보를 보호하여야 합니다.
                          2. ② 교육정보원의 개인정보보호에 관한 관리책임자는 학술연구정보서비스 이용자 관리담당 부서장(학술정보본부)이며, 주소 및 연락처는 대구광역시 동구 동내로 64(동내동 1119) KERIS빌딩, 전화번호 054-714-0114번, 전자메일 privacy@keris.or.kr 입니다. 개인정보 관리책임자의 성명은 별도로 공지하거나 서비스 안내에 게시합니다.
                          3. ③ 교육정보원은 개인정보를 이용고객의 별도의 동의 없이 제3자에게 제공하지 않습니다. 다만, 다음 각 호의 경우는 이용고객의 별도 동의 없이 제3자에게 이용 고객의 개인정보를 제공할 수 있습니다.
                            1. 1. 수사상의 목적에 따른 수사기관의 서면 요구가 있는 경우에 수사협조의 목적으로 국가 수사 기관에 성명, 주소 등 신상정보를 제공하는 경우
                            2. 2. 신용정보의 이용 및 보호에 관한 법률, 전기통신관련법률 등 법률에 특별한 규정이 있는 경우
                            3. 3. 통계작성, 학술연구 또는 시장조사를 위하여 필요한 경우로서 특정 개인을 식별할 수 없는 형태로 제공하는 경우
                          4. ④ 이용자는 언제나 자신의 개인정보를 열람할 수 있으며, 스스로 오류를 수정할 수 있습니다. 열람 및 수정은 원칙적으로 이용신청과 동일한 방법으로 하며, 자세한 방법은 공지, 이용안내에 정한 바에 따릅니다.
                          5. ⑤ 이용자는 언제나 이용계약을 해지함으로써 개인정보의 수집 및 이용에 대한 동의, 목적 외 사용에 대한 별도 동의, 제3자 제공에 대한 별도 동의를 철회할 수 있습니다. 해지의 방법은 이 약관에서 별도로 규정한 바에 따릅니다.
                        8. 제 16 조 (이용자의 의무)

                          1. ① 이용자는 서비스를 이용할 때 다음 각 호의 행위를 하지 않아야 합니다.
                            1. 1. 다른 이용자의 이용자번호를 부정하게 사용하는 행위
                            2. 2. 서비스를 이용하여 얻은 정보를 교육정보원의 사전승낙없이 이용자의 이용이외의 목적으로 복제하거나 이를 출판, 방송 등에 사용하거나 제3자에게 제공하는 행위
                            3. 3. 다른 이용자 또는 제3자를 비방하거나 중상모략으로 명예를 손상하는 행위
                            4. 4. 공공질서 및 미풍양속에 위배되는 내용의 정보, 문장, 도형 등을 타인에게 유포하는 행위
                            5. 5. 반국가적, 반사회적, 범죄적 행위와 결부된다고 판단되는 행위
                            6. 6. 다른 이용자 또는 제3자의 저작권등 기타 권리를 침해하는 행위
                            7. 7. 기타 관계 법령에 위배되는 행위
                          2. ② 이용자는 이 약관에서 규정하는 사항과 서비스 이용안내 또는 주의사항을 준수하여야 합니다.
                          3. ③ 이용자가 설치하는 단말기 등은 전기통신설비의 기술기준에 관한 규칙이 정하는 기준에 적합하여야 하며, 서비스에 장애를 주지 않아야 합니다.
                        9. 제 17 조 (광고의 게재)

                          교육정보원은 서비스의 운용과 관련하여 서비스화면, 홈페이지, 전자우편 등에 광고 등을 게재할 수 있습니다.
                      4. 제 4 장 서비스 이용 요금

                        1. 제 18 조 (이용요금)

                          1. ① 서비스 이용료는 기본적으로 무료로 합니다. 단, 민간업체와의 협약에 의해 RISS를 통해 서비스 되는 콘텐츠의 경우 각 민간 업체의 요금 정책에 따라 유료로 서비스 합니다.
                          2. ② 그 외 교육정보원의 정책에 따라 이용 요금 정책이 변경될 경우에는 온라인으로 서비스 화면에 게시합니다.
                      5. 제 5 장 마일리지 정책

                        1. 제 19 조 (마일리지 정책의 변경)

                          1. ① RISS 마일리지는 2017년 1월부로 모두 소멸되었습니다.
                          2. ② 교육정보원은 마일리지 적립ㆍ사용ㆍ소멸 등 정책의 변경에 대해 온라인상에 공지해야하며, 최근에 온라인에 등재된 내용이 이전의 모든 규정과 조건보다 우선합니다.
                      6. 제 6 장 저작권

                        1. 제 20 조 (게재된 자료에 대한 권리)

                          서비스에 게재된 자료에 대한 권리는 다음 각 호와 같습니다.
                          1. ① 게시물에 대한 권리와 책임은 게시자에게 있으며, 교육정보원은 게시자의 동의 없이는 이를 영리적 목적으로 사용할 수 없습니다.
                          2. ② 게시자의 사전 동의가 없이는 이용자는 서비스를 이용하여 얻은 정보를 가공, 판매하는 행위 등 서비스에 게재된 자료를 상업적 목적으로 이용할 수 없습니다.
                      7. 제 7 장 이의 신청 및 손해배상 청구 금지

                        1. 제 21 조 (이의신청금지)

                          이용자는 교육정보원에서 제공하는 서비스 이용시 발생되는 어떠한 문제에 대해서도 무료 이용 기간 동안은 이의 신청 및 민원을 제기할 수 없습니다.
                        2. 제 22 조 (손해배상청구금지)

                          이용자는 교육정보원에서 제공하는 서비스 이용시 발생되는 어떠한 문제에 대해서도 무료 이용 기간 동안은 교육정보원 및 관계 기관에 손해배상 청구를 할 수 없으며 교육정보원은 이에 대해 책임을 지지 아니합니다.
                      8. 부칙

                        이 약관은 2000년 6월 1일부터 시행합니다.
                      9. 부칙(개정 2005. 5. 31)

                        이 약관은 2005년 5월 31일부터 시행합니다.
                      10. 부칙(개정 2010. 1. 1)

                        이 약관은 2010년 1월 1일부터 시행합니다.
                      11. 부칙(개정 2010. 4 1)

                        이 약관은 2010년 4월 1일부터 시행합니다.
                      12. 부칙(개정 2017. 1 1)

                        이 약관은 2017년 1월 1일부터 시행합니다.

                      학술연구정보서비스 개인정보처리방침

                      Ver 8.6 (2023년 1월 31일 ~ )

                      닫기

                      학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.

                      처리목적 제1조(개인정보의 처리 목적)
                      RISS는 개인정보를 다음의 목적을 위해 처리합니다. 처리하고 있는 개인정보는 다음의 목적 이외의 용도로는 이용되지 않으며, 이용 목적이 변경되는 경우에는 「개인정보 보호법」 제18조에 따라 별도의 동의를 받는 등 필요한 조치를 이행할 예정입니다.
                      가. 서비스 제공
                           - 콘텐츠 제공, 문헌배송 및 결제, 요금정산 등 서비스 제공
                      나. 회원관리
                           - 회원제 서비스 이용에 따른 본인확인,
                           - 만14세 미만 아동 개인 정보 수집 시 법정 대리인 동의여부 확인, 추후 법정 대리인 본인확인
                           - 분쟁 조정을 위한 기록보존, 불만처리 등을 위한 원활한 의사소통 경로의 확보, 공지사항 전달
                      다. 서비스 개선
                           - 신규 서비스 개발 및 특화
                           - 통계학적 특성에 따른 서비스 제공 및 광고 게재, 이벤트 등 정보 전달 및 참여 기회 제공
                           - 서비스 이용에 대한 통계
                      보유 기간제2조(개인정보의 처리 및 보유 기간)
                      가. 처리기간 및 보유 기간:

                      3년

                      또는 회원탈퇴시까지
                      나. 다만, 다음의 사유에 해당하는 경우에는 해당 사유 종료시 까지 정보를 보유 및 열람합니다.
                           ▶ 신청 중인 서비스가 완료 되지 않은 경우
                                - 보존 이유 : 진행 중인 서비스 완료(예:원문복사 등)
                                - 보존 기간 : 서비스 완료 시까지
                                - 열람 예정 시기 : 수시(RISS에서 신청된 서비스의 처리내역 및 진행상태 확인 요청 시)
                           ▶ 관련법령에 의한 정보보유 사유 및 기간
                                - 대금결제 및 재화 등의 공급에 관한 기록 :

                      5년

                      (「전자상거래 등에서의 소비자보호에 관한
                                 법률」 제 6조 및 시행령 제 6조)
                                - 소비자의 불만 또는 분쟁 처리에 관한 기록 :

                      3년

                      (「전자상거래 등에서의 소비자보호에 관한
                                 법률」 제 6조 및 시행령 제 6조)
                                - 접속에 관한 기록 :

                      2년

                      이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)
                      처리 항목제3조(처리하는 개인정보의 항목)
                      가. 필수 항목 : ID, 이름, 생년월일, 신분(직업구분), 이메일, 소속분야,
                           보호자 성명(어린이회원), 보호자 이메일(어린이회원)
                      나: 선택 항목 : 소속기관명, 학과/부서명, 학번/직원번호, 전화, 주소, 장애인 여부
                      다. 자동수집항목 : IP주소, ID, 서비스 이용기록, 방문기록
                      개인 정보제4조(개인정보파일 등록 현황)
                      개인정보파일의 명칭 운영근거 / 처리목적 개인정보파일에 기록되는 개인정보의 항목 보유기간
                      학술연구정보서비스 이용자 가입정보 파일 한국교육학술정보원법 필수 ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 3년
                      또는
                      탈퇴시
                      선택 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소
                      제3자 제공제5조(개인정보의 제3자 제공)
                      가. RISS는 원칙적으로 정보주체의 개인정보를 제1조(개인정보의 처리 목적)에서 명시한 범위 내에서
                           처리하며, 정보주체의 사전 동의 없이는 본래의 범위를 초과하여 처리하거나 제3자에게 제공하지
                           않습니다. 단, 정보주체의 동의, 법률의 특별한 규정 등 개인정보 보호법 제17조 및 제18조에 해당하는
                           경우에만 개인정보를 제3자에게 제공합니다.
                      나. RISS는 원활한 서비스 제공을 위해 다음의 경우 정보주체의 동의를 얻어 필요 최소한의 범위로만
                           제공합니다.
                           - 복사/대출 배송 서비스를 위해서 아래와 같이 개인정보를 제공합니다.
                                1. 개인정보 제공 대상 : 제공도서관, ㈜이니시스(선불결제 시)
                                2. 개인정보 제공 목적 : 복사/대출 서비스 제공
                                3. 개인정보 제공 항목 : 이름, 전화번호, 이메일
                                4. 개인정보 보유 및 이용 기간 : 신청건 발생일 후 5년
                      ▶ 개인정보 제공에 동의하지 않을 권리가 있으며, 거부하는 경우 서비스 이용이 불가합니다.
                      처리 위탁제6조(개인정보 처리업무의 위탁)
                      RISS는 원활한 개인정보 업무처리를 위하여 다음과 같이 개인정보 처리업무를 위탁하고 있습니다.
                      가. 위탁하는 업무 내용 : 회원 개인정보 처리
                      나. 수탁업체명 : ㈜퓨쳐누리
                      RISS는 위탁계약 체결 시 「개인정보 보호법」 제26조에 따라 위탁업무 수행 목적 외 개인정보 처리금지, 안전성 확보조치, 재위탁 제한, 수탁자에 대한 관리·감독, 손해배상 등 책임에 관한 사항을 계약서 등 문서에 명시하고, 수탁자가 개인정보를 안전하게 처리하는지를 감독하고 있습니다.
                      위탁업무의 내용이나 수탁자가 변경될 경우에는 지체 없이 본 개인정보 처리방침을 통하여 공개하도록 하겠습니다.
                      파기제7조(개인정보의 파기 절차 및 방법)
                      가. 파기절차
                           - 개인정보의 파기 : 보유기간이 경과한 개인정보는 종료일로부터 지체 없이 파기
                           - 개인정보파일의 파기 : 개인정보파일의 처리 목적 달성, 해당 서비스의 폐지, 사업의 종료 등 그
                            개인정보파일이 불필요하게 되었을 때에는 개인정보의 처리가 불필요한 것으로 인정되는 날로부터
                            지체 없이 그 개인정보파일을 파기.
                      나. 파기방법
                           - 전자적 형태의 정보는 기록을 재생할 수 없는 기술적 방법을 사용하여 파기.
                           - 종이에 출력된 개인정보는 분쇄기로 분쇄하거나 소각을 통하여 파기.
                      정보주체의 권리의무제8조(정보주체와 법정대리인의 권리·의무 및 그 행사 방법)
                      정보주체(만 14세 미만인 경우에는 법정대리인을 말함)는 개인정보주체로서 다음과 같은 권리를 행사할 수 있습니다.
                      가. 권리 행사 항목 및 방법
                           - 권리 행사 항목: 개인정보 열람 요구, 오류 정정 요구, 삭제 요구, 처리정지 요구
                           - 권리 행사 방법: 개인정보 처리 방법에 관한 고시 별지 제8호(대리인의 경우 제11호) 서식에 따라
                            작성 후 서면, 전자우편, 모사전송(FAX), 전화, 인터넷(홈페이지 고객센터) 제출
                      나. 개인정보 열람 및 처리정지 요구는 「개인정보 보호법」 제35조 제5항, 제37조 제2항에 의하여
                            정보주체의 권리가 제한 될 수 있음
                      다. 개인정보의 정정 및 삭제 요구는 다른 법령에서 그 개인정보가 수집 대상으로 명시되어 있는 경우에는
                            그 삭제를 요구할 수 없음
                      라. RISS는 정보주체 권리에 따른 열람의 요구, 정정·삭제의 요구, 처리정지의 요구 시
                            열람 등 요구를 한 자가 본인이거나 정당한 대리인인지를 확인함.
                      마. 정보주체의 권리행사 요구 거절 시 불복을 위한 이의제기 절차는 다음과 같습니다.
                           1) 해당 부서에서 열람 등 요구에 대한 연기 또는 거절 시 요구 받은 날로부터 10일 이내에 정당한 사유
                              및 이의제기 방법 등을 통지
                           2) 해당 부서에서 정보주체의 이의제기 신청 및 접수(서면, 유선, 이메일 등)하여 개인정보보호 담당자가
                              내용 확인
                           3) 개인정보관리책임자가 처리결과에 대한 최종 검토
                           4) 해당부서에서 정보주체에게 처리결과 통보
                      *. [교육부 개인정보 보호지침 별지 제1호] 개인정보 (열람, 정정·삭제, 처리정지) 요구서
                      *. [교육부 개인정보 보호지침 별지 제2호] 위임장
                      안전성확보조치제9조(개인정보의 안전성 확보조치)
                      가. 내부관리계획의 수립 및 시행 : RISS의 내부관리계획 수립 및 시행은 한국교육학술정보원의 내부
                            관리 지침을 준수하여 시행.
                      나. 개인정보 취급 담당자의 최소화 및 교육
                           - 개인정보를 취급하는 분야별 담당자를 지정․운영
                           - 한국교육학술정보원의 내부 관리 지침에 따른 교육 실시
                      다. 개인정보에 대한 접근 제한
                           - 개인정보를 처리하는 데이터베이스시스템에 대한 접근권한의 부여, 변경, 말소를 통하여
                           개인정보에 대한 접근통제 실시
                           - 침입차단시스템, ID/패스워드 및 공인인증서 확인을 통한 접근 통제 등 보안시스템 운영
                      라. 접속기록의 보관 및 위변조 방지
                           - 개인정보처리시스템에 접속한 기록(웹 로그, 요약정보 등)을 2년 이상 보관, 관리
                           - 접속 기록이 위변조 및 도난, 분실되지 않도록 보안기능을 사용
                      마. 개인정보의 암호화 : 이용자의 개인정보는 암호화 되어 저장 및 관리
                      바. 해킹 등에 대비한 기술적 대책
                           - 보안프로그램을 설치하고 주기적인 갱신·점검 실시
                           - 외부로부터 접근이 통제된 구역에 시스템을 설치하고 기술적/물리적으로 감시 및 차단
                      사. 비인가자에 대한 출입 통제
                           - 개인정보를 보관하고 있는 개인정보시스템의 물리적 보관 장소를 별도 설치․운영
                           - 물리적 보관장소에 대한 출입통제, CCTV 설치․운영 절차를 수립, 운영
                      자동화 수집제10조(개인정보 자동 수집 장치의 설치·운영 및 거부)
                      가. 정보주체의 이용정보를 저장하고 수시로 불러오는 ‘쿠키(cookie)’를 사용합니다.
                      나. 쿠키는 웹사이트를 운영하는데 이용되는 서버(http)가 이용자의 컴퓨터브라우저에게 보내는 소량의
                           정보이며 이동자들의 PC 컴퓨터내의 하드디스크에 저장되기도 합니다.
                           1) 쿠키의 사용목적 : 이용자에게 보다 편리한 서비스 제공하기 위해 사용됩니다.
                           2) 쿠키의 설치·운영 및 거부 : 브라우저 옵션 설정을 통해 쿠키 허용, 쿠키 차단 등의 설정을 할 수
                                있습니다.
                                - Internet Explorer : 웹브라우저 우측 상단의 도구 메뉴 > 인터넷 옵션 > 개인정보 > 설정 > 고급
                                - Edge : 웹브라우저 우측 상단의 설정 메뉴 > 쿠키 및 사이트 권한 > 쿠키 및 사이트 데이터
                                   관리 및 삭제
                                - Chrome : 웹브라우저 우측 상단의 설정 메뉴 > 보안 및 개인정보 보호 > 쿠키 및 기타 사이트
                                   데이터
                           3) 쿠키 저장을 거부 또는 차단할 경우 서비스 이용에 어려움이 발생할 수 있습니다.
                      개인정보보호책임자제11조(개인정보 보호책임자)
                      가. RISS는 개인정보 처리에 관한 업무를 총괄해서 책임지고, 개인정보 처리와 관련한 정보주체의
                           불만처리 및 피해구제 등을 위하여 아래와 같이 개인정보 보호책임자를 지정하고 있습니다.
                      구분 담당자 연락처
                      KERIS 개인정보 보호책임자 정보보호본부 김태우 - 이메일 : lsy@keris.or.kr
                      - 전화번호 : 053-714-0439
                      - 팩스번호 : 053-714-0195
                      KERIS 개인정보 보호담당자 개인정보보호부 이상엽
                      RISS 개인정보 보호책임자 대학학술본부 장금연 - 이메일 : giltizen@keris.or.kr
                      - 전화번호 : 053-714-0149
                      - 팩스번호 : 053-714-0194
                      RISS 개인정보 보호담당자 학술진흥부 길원진

                      나. 정보주체는 RISS의 서비스(또는 사업)을 이용하시면서 발생한 모든 개인정보 보호 관련 문의, 불만처리,
                           피해구제 등에 관한 사항을 개인정보 보호책임자 및 담당부서로 문의 할 수 있습니다.
                           RISS는 정보주체의 문의에 대해 답변 및 처리해드릴 것입니다.
                      열람 청구제12조(개인정보의 열람청구를 접수·처리하는 부서)
                      가. 자체 개인정보 열람청구 접수ㆍ처리 창구
                           부서명 : 대학학술본부/학술진흥부
                           담당자 : 길원진
                           이메일 : giltizen@keris.or.kr
                           전화번호 : 053-714-0149
                           팩스번호 : 053-714-0194
                      나. 개인정보 열람청구 접수ㆍ처리 창구
                           - 개인정보보호 포털 웹사이트(www.privacy.go.kr)
                           - 개인정보보호 포털 → 민원마당 → 개인정보 열람 등 요구(본인확인을 위한
                             휴대전화·아이핀(I-PIN) 등이 있어야 함)
                      권익침해 구제제13조(정보주체의 권익침해에 대한 구제방법)
                      ‣ 정보주체는 개인정보침해로 인한 구제를 받기 위하여 개인정보분쟁조정위원회, 한국인터넷진흥원
                         개인정보침해신고센터 등에 분쟁해결이나 상담 등을 신청할 수 있습니다. 이 밖에 기타 개인정보
                         침해의 신고, 상담에 대하여는 아래의 기관에 문의하시기 바랍니다.

                         가. 개인정보분쟁조정위원회 : (국번없이) 1833-6972(www.kopico.go.kr)
                         나. 개인정보침해신고센터 : (국번없이) 118(privacy.kisa.or.kr)
                         다. 대검찰청 : (국번없이) 1301 (www.spo.go.kr)
                         라. 경찰청 : (국번없이) 182 (ecrm.cyber.go.kr)

                      ‣RISS는 정보주체의 개인정보자기결정권을 보장하고, 개인정보침해로 인한 상담 및 피해 구제를
                          위해 노력하고 있으며, 신고나 상담이 필요한 경우 아래의 담당부서로 연락해 주시기 바랍니다.
                         ▶ 개인정보 관련 고객 상담 및 신고
                            부서명 : 학술진흥부
                            담당자 : 길원진
                            연락처 : ☎053-714-0149 / (Mail) giltizen@keris.or.kr / (Fax) 053-714-0194
                      ‣「개인정보 보호법」제35조(개인정보의 열람), 제36조(개인정보의 정정·삭제), 제37조(개인정보의
                         처리정지 등)의 규정에 의한 요구에 대하여 공공기관의 장이 행한 처분 또는 부작위로 인하여 권리
                         또는 이익의 침해를 받은 자는 행정심판법이 정하는 바에 따라 행정심판을 청구할 수 있습니다.
                         ※ 행정심판에 대해 자세한 사항은 중앙행정심판위원회(www.simpan.go.kr) 홈페이지를 참고
                         하시기 바랍니다.
                      처리방침 변경제14조(추가적인 이용ㆍ제공 판단기준)
                      RISS는 「개인정보 보호법」제15조제3항 및 제17조제4항에 따라 「개인정보 보호법 시행령」
                      제14조의2에 따른 사항을 고려하여 정보주체의 동의 없이 개인정보를 추가적으로 이용 · 제공할 수 있습니다.
                      이에 따라 RISS는 정보주체의 동의 없이 추가적인 이용 · 제공을 하는 경우, 본 개인정보처리방침을
                      통해 아래와 같은 추가적인 이용 · 제공을 위한 고려사항에 대한 판단기준을 안내드리겠습니다.
                           ▶ 개인정보를 추가적으로 이용 · 제공하려는 목적이 당초 수집 목적과 관련성이 있는지 여부
                           ▶ 개인정보를 수집한 정황 또는 처리 관행에 비추어 볼 때 추가적인 이용 · 제공에 대한 예측
                                가능성이 있는지 여부
                           ▶ 개인정보의 추가적인 이용 · 제공이 정보주체의 이익을 부당하게 침해하는지 여부
                           ▶ 가명처리 또는 암호화 등 안전성 확보에 필요한 조치를 하였는지 여부
                      처리방침 변경제15조(개인정보 처리방침의 변경)
                      RISS는 「개인정보 보호법」제30조에 따라 개인정보 처리방침을 변경하는 경우 정보주체가 쉽게
                      확인할 수 있도록 홈페이지에 공개하고 변경이력을 관리하고 있습니다.
                      ‣ 이 개인정보처리방침은 2023. 1. 31. 부터 적용됩니다.
                      ‣ 이전의 개인정보처리방침은 상단에서 확인할 수 있습니다.

                      자동로그아웃 안내

                      닫기

                      인증오류 안내

                      닫기

                      귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
                      재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.

                      (참조 : RISS 이용약관 및 개인정보처리방침)

                      신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.

                      - 기존 아이디 재사용 불가

                      휴면계정 안내

                      RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.

                      (※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)

                      휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.

                      고객센터 1599-3122

                      ARS번호+1번(회원가입 및 정보수정)