KCI우수등재
뉴스와 소셜 데이터를 활용한 텍스트 기반 가짜 뉴스 탐지 방법론
저자
발행기관
학술지명
권호사항
발행연도
2018
작성언어
Korean
주제어
KDC
004
등재정보
KCI우수등재
자료형태
학술저널
발행기관 URL
수록면
19-39(21쪽)
KCI 피인용횟수
7
DOI식별코드
제공처
최근 가짜 뉴스가 분야를 막론하고 전 세계에서 주목을 받고 있으며, 현대경제연구원에서는 이러한 가짜 뉴스로 인한 피해 규모가 연간 약 30조 900억원에 달하는 것으로 추산하였다. 정부에서는 “가짜 뉴스 찾기”를 주제로 “인공지능 R&D 챌린지” 대회를 개최하여 가짜 뉴스를 가려낼 인공지능 원천기술 개발에 대한 첫 걸음을 내딛고 있으며, 민간 차원에서도 다양한 분야에서 팩트 체크 서비스가 제공되고 있다. 학계에서도 가짜 뉴스를 탐지하기 위한 시도가 전문가 기반, 집단지성 기반, 인공지능 기반, 시맨틱 기반 등으로 활발하게 이루어지고 있다. 하지만 이러한 시도는 조작의 정밀도가 높을수록 뉴스 자체에 대한 분석만으로 진위 여부를 식별하기가 더욱 어렵다는 한계를 경험하고 있으며, 가짜 뉴스 탐지 모델의 정확도가 과평가된 경향을 보이고 있다. 따라서 본 연구에서는 가짜 뉴스 탐지 모델 정확도의 공정성을 확보하고, 뉴스의 내용뿐만 아니라 해당 뉴스에 대한 반응으로 자연적으로 발생한 광범위한 소셜데이터를 활용하여 뉴스의 진위 여부를 판정하는 방안을 제안하고자 한다.
더보기Recently, fake news has attracted worldwide attentions regardless of the fields. The Hyundai Research Institute estimated that the amount of fake news damage reached about 30.9 trillion won per year. The government is making efforts to develop artificial intelligence source technology to detect fake news such as holding “artificial intelligence R&D challenge” competition on the title of “searching for fake news.” Fact checking services are also being provided in various private sector fields. Nevertheless, in academic fields, there are also many attempts have been conducted in detecting the fake news. Typically, there are different attempts in detecting fake news such as expert-based, collective intelligence-based, artificial intelligence-based, and semantic-based. However, the more accurate the fake news manipulation is, the more difficult it is to identify the authenticity of the news by analyzing the news itself. Furthermore, the accuracy of most fake news detection models tends to be overestimated. Therefore, in this study, we first propose a method to secure the fairness of false news detection model accuracy. Secondly, we propose a method to identify the authenticity of the news using the social data broadly generated by the reaction to the news as well as the contents of the news.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2022 | 평가예정 | 계속평가 신청대상 (등재유지) | |
2017-01-01 | 평가 | 우수등재학술지 선정 (계속평가) | |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2005-05-25 | 학술지등록 | 한글명 : 한국전자거래학회지외국어명 : The Journal of Society for e-Business Studies | KCI등재 |
2005-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
2004-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | KCI후보 |
2003-01-01 | 평가 | 등재후보학술지 유지 (등재후보1차) | KCI후보 |
2002-01-01 | 평가 | 등재후보 1차 FAIL (등재후보1차) | KCI후보 |
2001-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 1 | 1 | 0.92 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.88 | 0.91 | 1.281 | 0.3 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)