KCI등재
Fay-Herriot 모형 하에서의 베이지안 모형 선택기준 비교 = Comparison of Bayesian Model Selection Criteria in Fay-Herriot Model
저자
발행기관
학술지명
Journal of the Korean Data Analysis Society(Journal of The Korean Data Analysis Society)
권호사항
발행연도
2018
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
수록면
2333-2342(10쪽)
KCI 피인용횟수
1
DOI식별코드
제공처
There are various model selection criteria for Bayesian model. Sometimes model selection criteria may determine the different models as the best model. In this study we confirm the best Bayesian model selection criteria in semi-parametric Fay-Herriot model under measurement error covariate based on the simulation studies. We consider the best true model based on the root mean square errors and compare the correct proportions among the mean logarithmic conditional predictive ordinate (LCPO), the deviance information criterion (DIC) and the posterior expected predictive deviance (PEPD) for simulation data. For fitting the model and estimating parameters, we consider hierarchical Bayesian approach based on the Markov chain Monte Carlo (MCMC) method. As a result PEPD has the highest correct proportion of selecting the best true model. But the correct proportion tends to decrease when the variance increases, whereas the DIC and LCPO were not significantly affected by variance.
더보기베이지안 모형의 적합도를 비교하기 위한 여러 가지 베이지안 모형 선택기준이 제시되고 있다. 이러한 모형 선택기준들이 동일한 모형을 최적의 모형으로 선택하기도 하지만 때로는 서로 다른 모형을 최적 모형으로 선택하기도 한다. 이에 본 연구에서는 모의실험을 통해 기능적 및 구조적 측정오차 하에서 준모수적 Fay-Herriot 모형의 가장 적절한 베이지안 모형 선택기준을 확인하고자 한다. 본 연구에서 고려하고자 하는 베이지안 모형 선택기준에는 LCPO(logarithmic conditional predictive ordinate), DIC(deviance information criterion), PEPD(posterior expected predictive deviance)이며, 모의실험에서 모수 추정 및 모형 적합을 위해서 계층적 구조를 기반으로 하는 MCMC(Markov chain Monte Carlo) 방법을 사용하고자 한다. 모의실험 연구에서 최적의 모형 선정은 RMSE(root mean square error)를 이용하였으며 모의실험 결과 PEPD가 최적의 모형을 선택하는 비율이 가장 높게 나타나지만 직접추정치의 분산이 커질수록 최적의 모형을 선택하는 비율이 낮아지는 경향을 보였으며, LCPO와 DIC는 직접추정치의 분산에 영향을 크게 받지 않는 것으로 나타났다.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | KCI등재 |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2005-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
2004-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | KCI후보 |
2002-07-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 1.26 | 1.26 | 1.15 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
1.05 | 0.98 | 0.956 | 0.4 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)