KCI등재
동적 시간워핑을 활용한 시계열자료의 군집분석 = A Study on Time-series Clustering Analysis based on Dynamic Time Warping
Two different approaches are considered for the clustering analysis of time-series data: time-domain approach and frequency-domain one. In the time domain, distance metrics measuring similarities among the time-series data take the estimation results under certain parametric models or autocorrelation structures inherent in each of the processes into account. The frequency-domain approach also plays an important role in time-series clustering analysis by transforming auto-covariance function into spectrum prior to measuring similarities among the processes. However, the previous time-series clustering approaches depend on assumptions of distribution or models. In this study, we apply the dynamic time warping (DTW) algorithm in which no assumptions are needed. This algorithm enables us to compare two time-series processes in order to measure similarities even when one process is temporally shifted from the other one. We evaluate the performance of DTW and compare with the metrics forementioned via the simulation study. For the real application, we considered the U.S. state-level seasonally adjusted monthly unemployment rate data.
더보기시계열자료의 군집분석은 시간영역(time domain) 혹은 주파수영역(frequency domain)에서의 거리개념을 통해 이루어졌다. 시간 영역에서는 특정한 모수적(parametric) 모형을 적합한 후 모수 추정결과의 유사성을 고려하거나 자기상관구조(auto-correlation structure)의 유사성을 고려하여 거리개념을 도입하였다. 주파수 영역에서는 변동주기에 따른 자료의 순환구조를 의미하는 스펙트럼(spectrum)을 구한 후 적절한 변환을 통한 거리개념을 도입하였다. 본 논문에서는 주어진 원 시계열자료에 거리개념을 도입하되 동일한 시점 간의 거리 뿐 아니라 상이한 시점 간의 거리 또한 고려하는 동적 시간워핑(dynamic time warping; DTW)을 적용하고자 한다. 문자인식 및 행동인식 등의 여러 분야에서 활용되는 이 알고리즘은 시점에 국한하지 않은 측정값들 간의 비교를 가능케 한다. 모의실험을 통해 정상성 및 비정상성 하에서의 여러 시나리오 하에서, 시간영역과 주파수영역에서 널리 활용되는 다양한 거리들과 동적 시간워핑의 성능을 비교, 평가하였고 그 특성을 파악하였다. 또한 실증자료분석을 통해 미국 50개 주의 실업률 자료를 군집화하였고 동적 시간워핑방법을 이용하여 그 특성을 비교, 분석하였다.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | KCI등재 |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2005-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
2004-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | KCI후보 |
2002-07-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 1.26 | 1.26 | 1.15 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
1.05 | 0.98 | 0.956 | 0.4 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)