KCI등재
SCOPUS
기계학습 및 수치실험을 활용한 선체고정형소나 해상 시운전 평가 방안 = A sea trial method of hull-mounted sonar using machine learning and numerical experiments
In this paper, efficient and reliable methodologies for conducting sea trials to evaluate the performance of hull-mounted sonar systems is discussed. These systems undergo performance verification during ship construction via sea trials. However, the evaluation procedures often lack detailed consideration of variabilities in detection performance due to seabed topography, seasonal factors. To resolve this issue, temperature and salinity structure data were collected from 1967 to 2022 using ARGO floats and ocean observers data. The paper proposes an efficient and reliable sea trial method incorporating Bellhop modeling. Furthermore, a machine learning model applying a Physics-Informed Neural Networks was developed using the acquired data. This model predicts the sound speed profile at specific points within the sea trial area, reflecting seasonal elements of performance evaluation. In this study, we predicted the seasonal variations in sound speed structure during sea trial operations at a specific location within the trial area. We then proposed a strategy to account for the variability in detection performance caused by seasonal factors, using results from Bellhop modeling.
더보기본 논문에서는 선체고정형소나의 해상 시운전을 효율적이면서 신뢰성 있게 수행하기 위한 방안을 제시하였다. 현재 함 건조 과정에서 선체고정형소나의 해상 시운전 절차에는 해저 지형, 계절적 요인 등에 따른 탐지 성능의 변동성이 세밀하게 반영되어 있지 않다. 문제 해결을 위해 1967년부터 2022년까지의 기간 동안 Array for Real time Geostrophic Oceanography(ARGO) 플로트 및 정선 해양관측 정점 데이터를 통해 수온, 염도 구조를 수집하고, 수집된 데이터를 바탕으로 월별 평균 음속 구조를 분석하였다. Bellhop 모델링을 통해 해상 시운전 구역 내 해저 지형 선택, 선체고정형소나와 표적함의 배치, 음파 전송 방향 및 빔 조향각 설정이 포함된 해상 시운전 세부 수행 방안을 제안하였다. 또한, 획득 데이터를 활용하여 물리정보신경망이 적용된 기계학습 모델을 도출하였다. 이를 통해 해상 시운전 구역내 특정 지점에서 해상 시운전을 수행하는 시점의 계절적 요소를 반영한 음속 구조를 예측하고, Bellhop 모델링 결과를통해 계절적 요인에 의한 탐지 성능 변동성을 반영한 해상 시운전 방안을 제시하였다.
더보기서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)