KCI등재
강화 학습에 기초한 로봇 축구 에이전트의 설계 및 구현 = Design and implementation of Robot Soccer Agent Based on Reinforcement Learning
저자
발행기관
학술지명
권호사항
발행연도
2002
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
수록면
139-146(8쪽)
DOI식별코드
제공처
로봇 축구 시뮬레이션 게임은 하나의 동적 다중 에이전트 환경이다. 본 논문에서는 그러한 환경 하에서 각 에이전트의 동적 위치 결정을 위한 새로운 강화학습 방법을 제안한다. 강화학습은 한 에이전트가 환경으로부터 받는 간접적 지연 보상을 기초로 누적 보상값을 최대화할 수 있는 최적의 행동 전략을 학습하는 기계학습 방법이다. 따라서 강화학습은 입력-출력 쌍들이 훈련 예로 직접 제공되지 않는 다는 점에서 교사학습과 크게 다르다. 더욱이 Q-학습과 같은 비-모델 기반의 강화학습 알고리즘들은 주변 환경에 대한 어떤 모델도 학습하거나 미리 정의하는 것을 요구하지 않는다. 그럼에도 불구하고 이 알고리즘들은 에이전트가 모든 상태-행동 쌍들을 충분히 반복 경험할 수 있다면 최적의 행동전략에 수렴할 수 있다. 하지만 단순한 강화학습 방법들의 가장 큰 문제점은 너무 큰 상태 공간 때문에 보다 복잡한 환경들에 그대로 적용하기 어렵다는 것이다. 이런 문제점을 해결하기 위해 본 연구에서는 기존의 모듈화 Q-학습방법(MQL)을 개선한 적응적 중재에 기초한 모듈화 Q-학습 방법(AMMQL)을 제안한다. 종래의 단순한 모듈화 Q-학습 방법에서는 각 학습 모듈들의 결과를 결합하는 방식이 매우 단순하고 고정적이었으나 AMMQL학습 방법에서는 보상에 끼친 각 모듈의 기여도에 따라 모듈들에 서로 다른 가중치를 부여함으로써 보다 유연한 방식으로 각 모듈의 학습결과를 결합한다. 따라서 AMMQL 학습 방법은 큰 상태공간의 문제를 해결할 수 있을 뿐 아니라 동적인 환경변화에 보다 높은 적응성을 제공할 수 있다. 본 논문에서는 로봇 축구 에이전트의 동적 위치 결정을 위한 학습 방법으로 AMMQL 학습 방법을 사용하였고 이를 기초로 Cogitoniks 축구 에이전트 시스템을 구현하였다.
더보기The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless these algorithms can learn the optimal policy if the agent can visit every state-action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem, we suggest Adaptive Mediation-based Modular Q-Learning (AMMQL) as an improvement of the existing Modular Q-Learning (MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state space effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. In this paper we use the AMMQL algorithn as a learning method for dynamic positioning of the robot soccer agent, and implement a robot soccer agent system called Cogitoniks.
더보기분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)