KCI등재
의사결정나무 분석에 대한 국내 연구 동향 탐색
저자
발행기관
학술지명
Journal of the Korean Data Analysis Society(Journal of The Korean Data Analysis Society)
권호사항
발행연도
2024
작성언어
-주제어
KDC
310
등재정보
KCI등재
자료형태
학술저널
수록면
1375-1393(19쪽)
DOI식별코드
제공처
본 연구는 데이터마이닝 기법인 의사결정나무의 국내 연구 동향을 살펴봄으로써 본 분석방법의 기초적인 논리와 알고리즘, 그리고 다양한 활용 가능성을 탐색하는 데 목적이 있다. 이를 위해 2001년~2023년 국내 의사결정나무 분석을 활용한 학술논문 1,075편을 대상으로 연도별, 학술지별, 주제분야별, 저자별 논문 빈도와 논문에서 사용된 알고리즘의 빈도, 키워드 빈도, 키워드 중심성 분석을 실시하였다. 주요 분석 결과, 논문 빈도는 2001년 1편에서 시작하여 최근 2023년 87편으로 점차 증가한 것을 볼 수 있고, 사회과학 분야가 377편(35.07%)으로 가장 많았으며, 자연과학 분야 233편(21.67%), 공학 분야 230편(21.40%) 순으로 나타났다. 사용된 알고리즘은 CHAID가 315회(36.42%)로 가장 많이 활용되었고, CART가 310회(35.84%), 그리고 랜덤포레스트와 같은 앙상블 기법이 124회(14.34%), C5.0이 94회(10.87%)로 나타났으며, Quest의 사용빈도는 10회(1.16%)로 매우 낮았다. 연도별 알고리즘의 사용 흐름을 보면 의사결정나무의 예측률을 높이기 위한 앙상블 기법의 사용이 점차 증가하고 있는 것으로 나타났다. 논문 키워드는 ‘의사결정나무’가 687개, ‘데이터마이닝’ 239개, ‘머신러닝’ 105개, ‘로지스틱’ 98개, ‘신경망’ 68개 순으로 나타났으며, 연구내용과 관련된 키워드로 ‘자살’, ‘우울’, ‘고혈압’, ‘아건강(亚健康)’ 등과 같이 질병이나 건강과 관련된 키워드가 상위 키워드로 도출되어 의사결정나무가 의학 분야와 관련된 연구에서 많이 사용된 것을 알 수 있다. 이와 같은 분석 결과를 토대로 시사점 및 후속 연구를 제안하였다.
더보기This study explores the basic system and applicability of decision tree techniques by examining domestic research trends in this field. We analyzed 1,075 academic papers using domestic decision tree analysis from 2001 to 2023, categorized by year, journal, topic field, author, paper frequency, and frequency of algorithms used. Key findings reveal that the frequency of papers began with one in 2001, increasing to 87 in 2023. The distribution across fields was as follows: social science (377 papers, 35.07%), natural science (233 papers, 21.67%), and engineering (230 papers, 21.40%). Among the algorithms, CHAID was used most frequently (315 times, 36.42%), followed by CART (310 times, 35.84%), ensemble techniques like random forest (124 times, 14.34%), and C5.0 (94 times, 10.87%). The Quest algorithm was rarely used (10 times, 1.16%). The annual usage trends indicate a growing preference for ensemble techniques to enhance decision tree prediction rates. The paper's keywords included “decision trees” (687), “data mining” (239), “machine learning” (105), “logistic” (98), and “neural networks” (68). Notably, keywords related to health, such as “suicide,” “depression,” “high blood pressure,” and “health,” emerged prominently, signifying the extensive use of decision trees in medical research. Based on these findings, we propose implications and directions for follow-up studies.
더보기분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)