중국 법조문의 한국어 인공신경망 기계번역 품질에 관한 자동평가와 인간평가 분석
저자
발행사항
서울 : 한국외국어대학교 통번역대학원, 2023
학위논문사항
학위논문(박사) -- 한국외국어대학교 통번역대학원 , 통번역학(한중) , 2023. 8
발행연도
2023
작성언어
한국어
주제어
DDC
418.02 판사항(22)
발행국(도시)
서울
기타서명
A study on automatic evaluation and human evaluation of Chinese legal provisions with Korean neural machine translation quality
형태사항
x, 191 p. : 삽도 ; 26 cm
일반주기명
한국외국어대학교 논문은 저작권에 의해 보호받습니다.
지도교수: 김진아
참고문헌: p. 177-185
UCI식별코드
I804:11059-200000696151
소장기관
The present study conducted the translation quality of Korean neural machine translation in Chinese statutory provisions with automatic assessment and human judgement and compares and analyzes the results from the perspective of Chesterman’s expectancy norms among the descriptive translations studies.
The purpose of this is to examine whether Chinese legal texts of neural machine translation meets the reader’s expected standard to explore the translation quality of neural machine translation and how human evaluators can efficiently use automatic assessment.
This study targets a total of 648 sentences of 219 articles composed of the Constitution of People’s Republic of China, Chinese Nationality Act, Chinese State Reimbursement Act and Anti-foreign Sanctions Act provided by the World Laws Information Center under the Office of Legislation. The expected standards for legal text translation were set as accuracy, readability, and consistency in accordance with the legal translation guidelines of the Office of Legislation and the Korea Legislation Research Institute, which are public institutions in charge of legal translation in Korea. Machine translation was calculated through Naver Papago(N2MT) and Google Translation(GNMT) for legal texts, and evaluation was conducted by applying an automatic assessment model and human judgement model. The calculation date of the neural machine translation system was June 30, 2022 and three human evaluators participated in human judgement.
As a result of data analysis, both automatic assessment and human judgement except for Bleu score recorded 0.8 or higher. In terms of correlation, the correlation between automatic assessment was 0.60 to 0.85, showing a medium to high volume of correlation, and the correlation between human evaluators was 0.45 to 0.55, showing a weak or medium volume of correlation. The correlation between automatic assessment and human judgement showed the lowest correlation between Bleu score and human judgement with 0.22~0.26, Bert score and human judgement with 0.27~0.41 and Laser score with 0.00~0.18 respectively.
From the perspective of accuracy among expected standard, automatic assessment has advantages in accuracy because metrics have developed around accuracy, but errors have emerged that can’t completely judge from some sentences to contexts. In terms of human judgement, there were differences between evaluators in word layer, phrase layer, and text layer except sentence layer.
In terms of readability, automatic assessment and human judgement showed different patterns in judging the context. For some sentences that all human evaluators gave high scores, when vocabulary aspects or logical relationships changed, automatic assessment tended to judge them as errors.
For the consistency, in the case of automatic assessment, the same word is mixed and translated into different vocabulary even within a sentence, and it showed that it’s not unified with legal titles. In case of human judgement, overall consistency and coherency were judged with generally similar probabilities.
To recap, automatic assessment had advantages in the evaluation of ‘accuracy’ among the expected standard of legal texts, ‘accuracy’, ‘readability’ and ‘consistency,’ while ‘readability’ and ‘consistency’ were partially possible. In terms of human judgement, it had the advantage of being able to evaluate all of ‘accuracy’, ‘readability’, and ‘consistency,’ but there was a problem with the evaluator’s subjectivity. From the perspective of expected standard, to efficiently evaluate the machine translation of Chinese legal texts provisions, it’s necessary to consider items for ‘consistency’ and ‘weight factor’.
Analyzing the results of the present study, Korean neural machine translation is still difficult to completely meet the expected standard for Chinese legal texts, and it’s necessary to improve by technological development such as improving the similarity. In terms of human judgement, in order to use neural machine translation in the translation quality evaluation of Chinese legal texts done by human, methodological plan such as using statute books, analyzing, and synthesizing weak parts of neural machine translation and making evaluation criteria specialized in Chinese legal texts.
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)