KCI등재
A Multi-Layer Perceptron Neural Network for Predicting the Diagnosis of Osteoporosis in Women Using Physical Activity Factors
저자
Gwak Gyeong-tae (Kinetic Ergocise Based on Movement Analysis Laboratory, Wonju, KoreaDepartment of Physical Therapy, College of Health Science, Yonsei University, Wonju, Korea) ; 김준희 (연세대학교) ; Hwang Ui-jae (Kinetic Ergocise Based on Movement Analysis Laboratory, Wonju, KoreaDepartment of Physical Therapy, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Korea) ; 정성훈 (Department of Physical Therapy, Division of Health Science, Baekseok University) ; 안선희 (연세대학교)
발행기관
학술지명
근골격계과학기술학회(Journal of Musculoskeletal Science and Technology)
권호사항
발행연도
2023
작성언어
English
주제어
등재정보
KCI등재
자료형태
학술저널
수록면
54-61(8쪽)
DOI식별코드
제공처
Background Osteoporosis (OP) is a bone disease caused by a decrease in bone mineral density (BMD). OP is common in women because BMD gradually decreases after age 35. OP due to decreased BMD is highly likely to cause fatal traumatic injuries such as hip fracture.
Purpose The purpose of this study was developed and evaluated a multi-layer perceptron neural network model that predicts OP using physical characteristics and activity factors of adult women over the age of 35 whose BMD begins to decline.
Study design Cross-sectional study.
Methods Data from KNHANES were used to develop a multi-layer perceptron model for predicting OP. Data preprocessing included variable selection and sample balancing, and LASSO was used for feature selection. The model used 5 hidden layers, dropout and batch normalization and was evaluated using evaluation scores such as accuracy and recall score calculated from a confusion matrix.
Results Models were trained and evaluated to predict OP using selected features including age, quality of life index, weight, grip strength and average working hours per week. The model achieved 76.8% accuracy, 74.5% precision, 80.5% recall, 77.4% F1 score, and 74.8% ROC AUC.
Conclusions A multi-layer perceptron neural network for predicting OP diagnosis using physical characteristics and activity factors in women aged 35 years or older showed relatively good performance. Since the selected variables can be easily measured through surveys, assessment tool, and digital hand dynamometer, this model will be useful for screening elderly women with OP or not in areas with poor medical facilities or difficult access.
분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
한국교육학술정보원은 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
제1조(개인정보의 처리 목적)
제2조(개인정보의 처리 및 보유 기간)
제3조(처리하는 개인정보의 항목)
제4조(개인정보파일 등록 현황)
제5조(개인정보의 제3자 제공)
제6조(개인정보 처리업무의 위탁)
제7조(개인정보의 파기 절차 및 방법)
제8조(정보주체와 법정대리인의 권리·의무 및 그 행사 방법)
제9조(개인정보의 안전성 확보조치)
제10조(개인정보 자동 수집 장치의 설치·운영 및 거부)
제11조(개인정보 보호책임자)
제12조(개인정보의 열람청구를 접수·처리하는 부서)
제13조(정보주체의 권익침해에 대한 구제방법)
제14조(추가적 이용·제공 판단기준)
제15조(개인정보 처리방침의 변경)
제1조(개인정보의 처리 목적)
제2조(개인정보의 처리 및 보유 기간)
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)
제3조(처리하는 개인정보의 항목)
제4조(개인정보파일 등록 현황)
| 개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 |
보유기간 | |
|---|---|---|---|---|
| 학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
| 선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 | |||
제5조(개인정보의 제3자 제공)
제6조(개인정보 처리업무의 위탁)
제7조(개인정보의 파기 절차 및 방법)
제8조(정보주체와 법정대리인의 권리·의무 및 그 행사 방법)
제9조(개인정보의 안전성 확보조치)
제10조(개인정보 자동 수집 장치의 설치·운영 및 거부)
제11조(개인정보 보호책임자)
| 구분 | 담당자 | 연락처 |
|---|---|---|
| KERIS 개인정보 보호책임자 | 정보보호본부 김태우 |
- 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
| KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
| RISS 개인정보 보호책임자 | 학술데이터본부 정광훈 |
- 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
| RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
제12조(개인정보의 열람청구를 접수·처리하는 부서)
제13조(정보주체의 권익침해에 대한 구제방법)
제14조(추가적인 이용ㆍ제공 판단기준)
제15조(개인정보 처리방침의 변경)
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)