KCI등재
인공지능을 이용한 주진단 S코드의 낙상환자 예측모델 개발 = Development of a Prediction Model for Fall Patients in the Main Diagnostic S Code Using Artificial Intelligence
Falls are fatal accidents that occur more than 420,000 times a year worldwide. Therefore, to study patients with falls, we found the association between extrinsic injury codes and principal diagnosis S-codes of patients with falls, and developed a prediction model to predict extrinsic injury codes based on the data of principal diagnosis S-codes of patients with falls. In this study, we received two years of data from 2020 and 2021 from Institution A, located in Gangneung City, Gangwon Special Self-Governing Province, and extracted only the data from W00 to W19 of the extrinsic injury codes related to falls, and developed a prediction model using W01, W10, W13, and W18 of the extrinsic injury codes of falls, which had enough principal diagnosis S-codes to develop a prediction model. 80% of the data were categorized as training data and 20% as testing data. The model was developed using MLP (Multi-Layer Perceptron) with 6 variables (gender, age, principal diagnosis S-code, surgery, hospitalization, and alcohol consumption) in the input layer, 2 hidden layers with 64 nodes, and an output layer with 4 nodes for W01, W10, W13, and W18 exogenous damage codes using the softmax activation function. As a result of the training, the first training had an accuracy of 31.2%, but the 30th training had an accuracy of 87.5%, which confirmed the association between the fall extrinsic code and the main diagnosis S code of the fall patient.
더보기낙상사고는 세계적으로 매년 42만 건 이상 발생하는 치명적인 사고이다. 따라서, 낙상 환자를 연구하고자 낙상환자의 손상외인코드와 주진단 S코드의 연관성을 찾고, 낙상 환자의 주진단 S코드 데이터를 가지고 손상외인코드를 예측할 수 있는 예측모델을 개발하였다. 본 연구에서는 강원특별자치도 강릉시에 있는 A 기관의 2020~2021년 2년간의 데이터를 받아 낙상에 관련된 손상외인코드 W00~W19까지 데이터만 추출하고, 낙상 손상외인코드 중 예측모형을 개발할 정도의 주진단 S코드를 가지고 있는 W01, W10, W13, W18 데이터를 가지고 예측모형 개발하였다. 데이터 중 80%는 훈련용 데이터, 20%는 테스트용 데이터로 분류하였다. 모형 개발은 MLP(Multi-Layer Perceptron)을 이용하여 6개의 변수(성별, 나이, 주진단S코드, 수술유무, 입원유무, 음주유무)를 입력층에 64개의 노드를 가진 2개의 은닉층, 출력층은 softmax 활성화 함수를 이용하여 손상외인코드 W01, W10, W13, W18 총 4개의 노드를 가진 출력층으로 구성하여 개발하였다. 학습결과 첫 번째 학습했을 때 31.2%의 정확도를 가졌지만, 30번째는 87.5%의 정확도를 나타냈고 이를 통해 낙상환자의 낙상외인코드와 주진단 S코드의 연관성을 확인할 수 있었다.
더보기분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)