KCI우수등재
SCOPUS
CFD 경계층 파라미터 인공신경망을 이용한 익형 자체소음 예측 = Airfoil Self-Noise Prediction Using Artificial Neural Networks for CFD Boundary Layer Parameter
저자
발행기관
학술지명
한국항공우주학회지(Journal of the Korean Society for Aeronautical and Space Sciences)
권호사항
발행연도
2024
작성언어
Korean
주제어
등재정보
KCI우수등재,SCOPUS,ESCI
자료형태
학술저널
발행기관 URL
수록면
367-379(13쪽)
제공처
소장기관
본 연구에서는 2차원 Reynolds-Averaged Navier-Stokes (RANS)를 통해 예측된 경계층 파라미터를 학습하여 인공신경망 기반의 경계층 파라미터 예측 모델을 개발하였다. 개발된 경계층 모델은 다양한 익형의 뒷전 경계층 및 배제 두께를 예측하며 실험식 기반의 익형 자체소음을 예측하였다. 이 경계층 모델을 이용하여 익형의 최대 두께 및 캠버의 크기에 따른 NACA 익형을 통해 익형 형상에 따른 자체소음 민감도를 분석하였다. 그 결과 받음각, 양력계수, 양항비에 따른 익형의 최대 두께 및 캠버의 경향성을 확인할 수 있었다. 모델을 UH-1B 제자리 비행 회전익 로터에 적용하여 팁 마하수, 블레이드의 수, solidity, 익형의 최대 두께 및 캠버 등 로터의 파라미터를 변화함에 따라 톤 소음 및 익형 자체소음을 측정하였고 그 경향성을 확인할 수 있었다.
더보기This study presents the development of an artificial neural network-based boundary layer parameter prediction model, trained using two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations. The model accurately predicts boundary layer and displacement thicknesses on the trailing edge of diverse airfoil shapes, alongside estimating airfoil self-noise using empirical formulations. Employing this boundary layer model, the study analyzes the self-noise sensitivity of airfoil shapes, exploring variations in maximum thickness and camber across NACA airfoils. The findings revealed discernible trends in maximum thickness and camber of the airfoils with respect to angle of attack, lift coefficient, and lift-to-drag ratio. Furthermore, the model is extended to assess the UH-1B hovering rotor, predicting both tonal noise and airfoil self-noise across parameteric sweeps of tip Mach number, number of blades, rotor solidity, maximum thickness, and camber. The observed trends confirm the influence of these rotor parameters on tonal noise and self-noise levels.
더보기분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)