Low-Temperature Processes for Next-Generation Photovoltaics : Organic Solar Cells and Perovskite Solar Cells
저자
발행사항
울산 : Graduate School of UNIST, 2019
학위논문사항
학위논문(박사) -- Graduate School of UNIST , Engineering Energy Engineering , 2019. 8
발행연도
2019
작성언어
영어
주제어
발행국(도시)
울산
형태사항
72 ; 26 cm
일반주기명
지도교수: Seo, Kwanyong
UCI식별코드
I804:31001-200000222452
소장기관
The fabrication of semiconductors with excellent electrical and optical properties using solution processes has made a significant contribution to the field of optoelectronic devices such as displays and next-generation solar cells. In particular, the technology of forming a semiconductor on a flexible substrate through a solution process at a low temperature can reduce the manufacturing cost by enabling a large-area and mass production through a roll-to-roll process and can form products on various curved surfaces. Solar cells can provide sustainable energy supply based on infinite solar energy, which can also be a solution to global environmental problems. Because solar cells can be fabricated based on such low-temperature-solution processes, developing related technologies is one of the ways to commercialize solar cells. As an example, organic solar cells (OSCs) have received considerable attention recently due to their low manufacturing costs and high-power conversion efficiency (PCE) of more than 10%. However, unlike the case of using a high-temperature process, the PCE is lower when OSCs are fabricated on a flexible substrate through a low-temperature process.
For this reason, zinc oxide (ZnO) sol-gel, which is mainly used in organic solar cells, requires a high temperature of 200 ̊C or more to have excellent electrical characteristics. Therefore, to solve this problem, it is essential to use a conjugated polymer electrolyte that replaces zinc oxide without a heat-treatment process or use a non-thermal processing method as a nanomaterial in which zinc oxide is formed. Besides, researchers are using silver nanowires (AgNWs) to replace indium tin oxide (ITO), which is an expensive transparent conducting electrode (TCE), formed directly on a low-cost, flexible substrate. However, this transparent electrode also requires a temperature of 100 ̊C or more for superior electrical properties. To manufacture a flexible solar cell using a low-cost plastic substrate, development of a low-temperature process technology that can solve such a problem is required.
In this study, we have developed flexible solar cell by introducing poly [(9,9-bis(3'-(N,N-dimethylamino) propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene)] (PFN), which is one of the complex polymer electrolytes to replace ZnO. To realize this, we evaluated the possibility of using solar cells based on flexible substrates with AgNWs. First, since PFN was applied as an electron transport layer (ETL) instead of ZnO, it could reduce the processing time, and the process temperature could be drastically lowered simultaneously. In particular, a flexible substrate using AgNWs as a TCE causes a phenomenon in which AgNWs are lifted from the substrate due to the event of plastic from warping during the heat-treatment process. Because of this phenomenon, AgNWs contact the metal electrode on the opposite side, which increases the possibility of short-circuiting in the solar cell structure. However, using PFN can reduce the likelihood of this happening. TO investigate the role of the ETL, we studied the optical properties, electron transport and collection ability using scanning electron microscopy (SEM), ultraviolet-visible-near infrared (UV-VIS-NIR) spectroscopy and ultraviolet photoelectron spectroscopy (UPS). For fabrication of flexible OSCs, the organic photoactive layer was fabricated on PFN using {poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)car-bonyl]thieno[3,4-b]thiophenediyl] (PTB7) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM)}. This flexible solar cell not only achieved a much-improved PCE compared to the previously reported solar cell of AgNWs electrode on PET, but it also maintained a retained efficiency of less than 10% at 1000 cycles repeated bending in a radius of R 4.8 mm.
Second, a heat-treatment process is necessary for the formation of NW junctions when fabricating AgNW electrodes optimized for the flexibility characteristics. However, a solar cell manufactured using heat causes instability of the device itself. Therefore, in this study, cold isostatic pressing (CIP), which does not require heat-treatment, is used to realize intimate contact between AgNWs. Also, non-treated zinc oxide nanoparticles were applied to the ETL to conduct all the processes of fabricating flexible OSCs at room temperature. Transmission electron microscopy (TEM) and SEM were used to investigate the shape of AgNWs fabricated by CIP. poly[[2,6’-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7-th) and PC71BM were used as a photoactive layer for flexible OSCs and showed stable flexibility, continuous efficiency, and extreme bending properties. Besides, OSCs based on CIP treated AgNW electrodes achieved 100% reproducibility by overcoming the production yield of 75% of the conventional heat-treated AgNW electrodes based OSCs. Compared with the existing heat-treated AgNW electrodes formation method, it was confirmed that the AgNW electrodes using the CIP method contribute to the improvement of the performance of the flexible OSCs by forming a uniform film shape with excellent electron collecting ability.
Finally, Organic-inorganic hybrid perovskite solar cells, which can be manufactured simply by solution process technology, have attracted growing attention in terms of high efficiency and low fabrication cost. In particular, the production of high-quality perovskite films without pinholes is essential for high efficiency solar cells. Here, we have investigated the effect of solvent additive on perovskite film formation according to Gutmann’s donor number (DN) in PbI2 precursor solution based on two-step spin-process. Among the various solvent additives, dimethyl sulfide (DMS) has a high DN of 23.5 kcal·mol-1. The PbI2 precursor solution with DMS lead to the formation of perovskite thin film with a large grain size of a mean of and excellent electrical properties. The power conversion efficiency of our mixture of perovskite layers (FAPbI3)x(MAPbBr3)1-x based solar cell achieves a maximum of 21.2% and an average of 20.8% under reverse voltage scan under AM 1.5G with an irradiance of 100mW·cm-2. Our work suggests promising potential for better performance improvement of solvent engineering based planar perovskite solar cells.
분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)