KCI등재
Support Vector Machine을 이용한 생체 신호 분류기 개발 = Development of a Clinical Decision Support System Utilizing Support Vector Machine
저자
발행기관
학술지명
한국전자통신학회 논문지(The Journal of The Korea Institute of Electronic Communication Sciences)
권호사항
발행연도
2018
작성언어
-주제어
KDC
567
등재정보
KCI등재
자료형태
학술저널
수록면
661-667(7쪽)
KCI 피인용횟수
0
DOI식별코드
제공처
피부 저항을 이용한 생체 신호는 스트레스성 질환에 따라 각각 다른 특성을 보이고 있으며 이 특성을 이용하여 스트레스성 질환을 진단하는 생체진단 장비들이 개발 되었으며, 장비들은 피부 저항 측정기에서 측정한 신호를 해석하기 쉽게 출력해주며, 그 분야의 전문가는 출력 신호를 직접 보고 어떤 스트레스성 질환의 가능성이 높은지를 판단하게 된다. 하지만 각 측정 대상자에게서 측정된 생체 신호를 분석하여 측정 대상자가 어떤 스트레스성 질환을 가지고 있는지를 사람이 정확히 판단하기는 매우 어려울 뿐만 아니라 판단의 결과가 잘못될 가능성도 매우 높다. 이런 문제점을 해결하기 위하여 본 연구에서는 머신러닝 기법을 이용하여 측정된 신호가 어떤 스트레스성 질환의 신호에 해당하는지를 판단하는 기능을 구현하였다. 측정 장비의 낮은 컴퓨팅 능력을 고려하여 분류 기법은 SVM을 사용하였으며, 훈련 데이터와 테스트 데이터는 13개의 질환을 중심으로 오차범위 5를 사용하여 각 질환 당 1,000개를 랜덤하게 생성하여 사용하였다. 모의실험 결과에서 90% 이상의 판단 정확도를 보였으며 앞으로 측정 장비가 실제로 환자들에게 적용되면 다시 생성된 데이터로 분류기를 재훈련 할 수 있게 구성하였다.
더보기Biomedical signals using skin resistance have different characteristics according to stress diseases. Biological diagnostic devices for diagnosing stress diseases have been developed by using these characteristics, and devices have been developed so that the signals measured by the skin storage meter can be easily analyzed. Experts in the field will look directly at the output signal to determine the likelihood of any stress disorder. However, it is very difficult for a person to accurately determine whether a person to be measured has a stress disorder by analyzing a bio-signal measured by each person to be measured, and the result of the judgment is very likely to be wrong.
In order to solve these problems, we implemented the function of determining the signal of a stress disorder by using the machine learning technique. SVM was used as a classification method in consideration of low computing ability of measurement equipment. Training data and test data were randomly generated for each disease using error range 5 based on 13 diseases. Simulation results showed more than 90% decision accuracy. In the future, if the measurement equipment is actually applied to the patients, we can retrain the classifier with the newly generated data.
분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
2017-01-01 | 평가 | 등재학술지 선정 (계속평가) | KCI등재 |
2016-01-01 | 평가 | 등재후보학술지 유지 (계속평가) | KCI후보 |
2015-01-01 | 평가 | 등재후보학술지 유지 (계속평가) | KCI후보 |
2013-01-01 | 평가 | 등재후보 1차 FAIL (등재후보1차) | KCI후보 |
2012-01-01 | 평가 | 등재후보학술지 유지 (기타) | KCI후보 |
2011-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | KCI후보 |
2009-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
2007-08-27 | 학회명변경 | 한글명 : 학국전자통신학회 -> 한국전자통신학회영문명 : The Korea Insitute of Electronic Communication Sciences -> The Korea Institute of Electronic Communication Sciences |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.89 | 0.89 | 0.79 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.77 | 0.76 | 0.698 | 0.27 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)