KCI등재
문서 군집화를 위한 워드 임베딩, PCA와 K-평균 군집의 새로운 결합 = Novel Association of Word Embeddings, PCA and K-means for Text Clustering
저자
발행기관
학술지명
아시아태평양융합연구교류논문지(Asia-pacific Journal or Convergent Recearch Interchange)
권호사항
발행연도
2024
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
수록면
475-486(12쪽)
DOI식별코드
제공처
본 논문은 현대 웹 환경에서 다양한 주제의 문서가 폭발적으로 증가함에 따라 사용자가 원하는 정보를 찾기가 점점 어려워지는 문제를 다루고 있다. 문서 군집화는 비슷한 특징을 가진 문서들을 그룹화함으로써 정보의 접근성과 사용 편의성을 향상시킬 수 있는 강력한 도구로, 사용자가 필요한 정보를 빠르고 쉽게 찾을 수 있도록 도와준다. 본 논문에서는 문서 군집화를 위한 새로운 방법인 PCA-KM (Principal Component Analysis –K- means)을 제안하였다. PCA-KM은 워드 임베딩으로부터 얻은 문서의 고차원 벡터에 주성분 분석을 적용하여 차원을 축소한 후, 수정된 K-means을 반복적으로 적용하는 과정을 포함한다. 여러 군집화 성능지표를 사용해 워드 임베딩과 K-means를 단순 결합한 전통적인 방법과 제안된 방법을 비교하였다. 그 결과, 본 논문에서 제안한 방법이 여러 성능지표에서 비슷하거나 우수한 성능을 나타냈다. 따라서 제안한 방법이 더 효율적인 문서 검색 서비스의 발전에 기여할 것으로 기대된다.
더보기This paper addresses the problem of the increasing difficulty for users to find the information they want due to the explosive growth of documents on various topics in the modern web environment. Document clustering is a powerful tool that can improve the accessibility and usability of information by grouping documents with similar features, helping users quickly and easily find the information they need. In this paper, we proposed a novel method called PCA-KM (Principal Component Analysis –K- means) for document clustering. PCA-KM reduces dimensionality by applying principal component analysis to high-dimensional vectors of documents obtained from word embeddings, followed by the iterative application of modified K-means. Several clustering performance metrics were used to compare the proposed method with the traditional one, combining word embeddings and K-means. The results showed that the proposed method performed similarly or better on these metrics. Therefore, we expect that the proposed method will contribute to developing more efficient document retrieval services.
더보기분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)