KCI등재
사물인터넷 환경에서 데이터 희박성을 고려한 유사도 측정 방법 = A Similarity Measurement Method Considering Data Sparsity in IoT Environment
저자
발행기관
학술지명
권호사항
발행연도
2019
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
발행기관 URL
수록면
109-118(10쪽)
KCI 피인용횟수
0
제공처
The context-aware recommender system is a recommendation method considering the user's context in the existing method of the recommendation through the evaluation score of the users or the purchase history. As the Internet of Things become widely spread recently, the context-aware recommender system attracts the attention. However, the recommender system has a problem that is difficult to recommend to user with low volume of data. In addition, the sparse data problem of the recommendation method that reflects the context data is more serious than the existing recommendation method. Therefore, a recommendation method that can solve this problem is necessary. In this paper, we measure similarity by reflecting the number of items that are evaluated in common and apply context-aware collaborative filtering. As a result of the experiment, the proposed method is improved the recommendation performance compared with the existing similarity measurement and the proposed method is effective in the sparse data.
더보기상황인지 추천시스템은 사용자가 평가한 점수나 구매이력을 통해 추천하는 기존의 방법에서 사용자의 상황을 고려한 추천방법이다. 사물인터넷이 보편화되면서 상황인지 추천시스템이 주목받고 있다. 하지만 추천시스템은 데이터가 적은 사용자에게 추천하기가 어려운 문제점이 있다. 또한 기존 추천 방법보다 상황정보를 반영한 추천 방법의 데이터 희소성 문제는 더욱 심각하기 때문에 이를 해결할 수 있는 추천 방법이 필요하다. 본 논문은 공통적으로 평가한 항목의 수를 반영하여 유사도를 측정하며 상황인지 협업필터링을 적용하였다. 실험 결과, 제안하는 방법이 기존의 유사도 측정 방법보다 추천 성능이 개선되었으며, 제안한 방법이 희박한 데이터에서 효과적인 것을 확인할 수 있었다.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | KCI등재 |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | KCI등재 |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2010-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
2009-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | KCI후보 |
2007-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.02 | 0.02 | 0.01 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.02 | 0.02 | 0.183 | 0.03 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)