KCI우수등재
Hierarchical N:M Sparsity를 통한 DNN 모델 가속화 = Accelerating DNN Models via Hierarchical N:M Sparsity
저자
발행기관
학술지명
권호사항
발행연도
2024
작성언어
Korean
주제어
등재정보
KCI우수등재
자료형태
학술저널
발행기관 URL
수록면
583-591(9쪽)
제공처
N:M sparsity pruning은 NVIDIA의 Sparse Tensor Core 기술을 활용하여 심층 신경망을 압축하는 강력한 기법입니다. 하지만 이 기법은 하드웨어에 제한으로 인해 압축률이 고정되고 불필요한 입력 데이터 접근이 늘어나며 불균형한 중요 파라미터의 분포를 해결하지 못한다. 본 논문은 vector sparsity를 먼저 적용한 후 N:M sparsity를 적용하는 Hierarchical N:M(HiNM) sparsity를 제안하고, 이 sparsity를 위해 설계된 2-axis channel permutation (2CP) 기법을 제안한다. 실험 결과, HiNM sparsity은 기존 N:M sparsity보다 2배 높은 압축률에서 latency가 평균적으로 37% 감소하였다.
더보기N:M sparsity pruning is an effective approach for compressing deep neural networks by leveraging NVIDIA’s Sparse Tensor Core technology. Despite its effectiveness, this technique is constrained by hardware limitations, leading to fixed compression ratios and increased access to unnecessary input data, and does not adequately address the imbalanced distribution of essential parameters. This paper proposes Hierarchical N:M (HiNM) sparsity, where vector sparsity is applied prior to N:M sparsity for various-levels of sparsity. We also introduce a novel permutation technique tailored for HiNM sparsity, named 2-axis channel permutation (2CP). The experimental results showed that HiNM sparsity achieves a compression ratio twice that of traditional N:M sparsity while reducing latency by an average of 37%.
더보기서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)