KCI등재
변형된 Attention 메커니즘 기반의 LSTM을 통한 전력수요 예측 프레임웍
저자
발행기관
학술지명
한국지능시스템학회논문지(Journal of Korean institute of intelligent systems)
권호사항
발행연도
2020
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
발행기관 URL
수록면
242-250(9쪽)
KCI 피인용횟수
0
제공처
소장기관
본 연구는 효율적인 스마트 그리드 시스템을 운용하기 위한 필수 불가결한 요소인 전력수요의 보다 정확한 예측을 그 대상으로 한다. 기존의 시계열적 방법론 및 인공신경망을 이용한 방법론 들이 전력수요 예측에 쓰이는 동안, 전력수요가 가지는 비선형적 요소 및 소수의 데이터 등이 그 이슈로 여겨져 왔다. 이를 해소하기 위하여, 본 연구는 두 개의 LSTM을 하나의 Attention Mechanism으로 연결한 변형된 Attention Mechanism 기반의 LSTM (MA-LSTM)을 제안한다. MA-LSTM은 기존의 시계열화되어 있는 데이터를 첫 번째 LSTM에 넣고, 여기서 추출된 attention 요소들을 두 번째 LSTM에 넣어 학습한 후, 최종적으로 Attentaion 레이어에서 결합하는 형태를 취한다. 이를 통하여 소수의 데이터를 가지고 보다 정확하게 특성에 기초하여 학습 및 예측하는 특징을 가진다. 본 연구에서는 실제 전력수요 데이터의 예측을 통하여, 제안된 프레임웍을 ARIMA 및 LSTM과 비교하여 그 우수성을 실험적으로 보여준다.
더보기This research focuses on an electricity demand forecasting framework, which is an essential component of an efficient smart grid system. While time-series analysis and neural network-based approaches have been applied, non-linearity and few number of data are considered main issues. In order to overcome these issues, the research proposes a Modified Attention-based Long Short Term Memory(MA-LSTM) which combines two LSTMs with one Attention layer. While the first LSTM handles the original data, the second LSTM module handles attention-based context features extracted from the data. Then, these are combined with an attention layer. For this manner, the more accurate features are trained with a small number of data in the proposed MA-LSTM. In order to show the effectiveness of MA-LSTM, the real electricity data forecasting is conducted and compared with ARIMA and LSTM methods.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 선정 (재인증) | KCI등재 |
2019-12-01 | 평가 | 등재후보로 하락 (계속평가) | KCI후보 |
2016-01-01 | 평가 | 등재학술지 선정 (계속평가) | KCI등재 |
2015-12-01 | 평가 | 등재후보로 하락 (기타) | KCI후보 |
2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2008-02-20 | 학술지명변경 | 한글명 : 한국퍼지및지능시스템학회 논문지 -> 한국지능시스템학회 논문지외국어명 : 미등록 -> Journal of Korean Institute of Intelligent Systems | KCI등재 |
2008-02-18 | 학회명변경 | 한글명 : 한국퍼지및지능시스템학회 -> 한국지능시스템학회영문명 : Korea Fuzzy Logic And Intelligent Systems Society -> Korean Institute of Intelligent Systems | KCI등재 |
2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2005-01-01 | 평가 | 등재학술지 유지 (등재유지) | KCI등재 |
2002-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | KCI등재 |
1999-07-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.62 | 0.62 | 0.63 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.56 | 0.49 | 0.866 | 0.2 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)