KCI등재
설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상 = Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology
저자
발행기관
학술지명
권호사항
발행연도
2023
작성언어
Korean
주제어
등재정보
KCI등재
자료형태
학술저널
수록면
801-813(13쪽)
제공처
소장기관
최근 인공신경망(Artificial Neural Network, ANN)의 연구가 활발하게 진행되면서 ANN을 이용하여 하천의 수질을 예측하는 연구가 진행되고 있다. 그러나 ANN은 Black-box의 형태이기 때문에 ANN 내부의 연산과정을 분석하는데 어려움이 있다. ANN의 연산과정을 분석하기 위해 설명가능한 인공지능(eXplainable Artificial Intelligence, XAI) 기술이 사용되고 있으나, 수자원 분야에서 XAI 기술을 활용한 연구는 미비한 실정이다. 본 연구는 XAI 기술 중 Layer-wise Relevance Propagation (LRP)을 사용하여 낙동강의 다산 수질관측소의 수온, 용존산소량, 수소이온농도 및 엽록소-a를 예측하기 위한 Multi Layer Perceptron (MLP)을 분석하였다. LRP를 기반으로 수질을 학습한 MLP를 분석하여 수질을 예측하기 위한 최적의 입력자료를 선정하고, 최적의 입력자료를 이용하여 학습한 MLP의 예측결과에 대한 분석을 실시하였다. LRP를 이용하여 최적의 입력자료를 선정한 결과를 보면, 수온, 용존산소량, 수소이온농도 및 엽록소-a 모두 주변지역의 일 강수량을 제외한 입력자료를 학습한 MLP의 예측정확도가 가장 높았다. MLP의 용존산소량 예측결과에 대한 분석결과를 보면, 최고점에서 수소이온농도 및 용존산소량의 영향이 크고 최저점에서는 수온의 영향이 큰 것으로 분석되었다.
더보기Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.
더보기분석정보
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)