KCI등재
신경망을 이용한 루프검지기 차종분류 알고리즘 = ILD Vehicle Classification Algorithm using Neural Networks
저자
발행기관
학술지명
권호사항
발행연도
2006
작성언어
Korean
주제어
KDC
569
등재정보
KCI등재
자료형태
학술저널
수록면
489-498(10쪽)
KCI 피인용횟수
2
제공처
소장기관
본 논문은 루프검지기를 이용한 차종분류 방법의 성능 향상을 위해 신경망 패턴인식 기술을 이용한 차종분류 알고리즘을 제안하였다. 기존의 루프검지기 차종분류 방법은 차량의 길이 정보만을 이용해서 차종을 분류하는 것이다. 그러나 루프검지기의 특성상 차종에 따른 길이 정보가 정확하지 않으므로 길이가 비슷한 차종에 대해서는 차종분류 오류가 자주 발생하고 있는 실정이다. 이와 같은 문제점을 개선하기 위해 본 연구에서는 루프검지기 시스템에 신경망 패턴 인식 기술을 적용하였다. 제안된 알고리즘은 차량이 검지영역을 통과할 때 발생하는 루프검지기 공진주파수 값 변화율과 점유시간 정보를 신경망의 입력자료로 활용하여 차량을 5가지 종류로 분류하는 방식이다. 개발된 알고리즘의 성능을 평가하기 위하여, 현장실험을 통해 자료를 수집하고 신경망 학습 및 실험을 실시한 결과 차종분류 정확도가 91.3%였으며, 이는 기존의 연구결과와 비교할 때 매우 높은 것이다.
더보기In this paper, we suggested a vehicle classification algorithm using pattern recognition method. At present, Inductive Loop Detector is rarely used for vehicle classification because of its low accuracy. To improve the accuracy, we suggest a new algorithm for Loop Detector using neural networks. In the developed algorithm, the inputs to the neural networks are the variation rate of frequency and occupancy-time. The output is classified vehicles. The developed algorithm was assessed at test sites and the recognition rate was 91.3percent. The results verified that the proposed algorithm improves the vehicle classification accuracy compared to the conventional method based on Loop Detector.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2014-09-01 | 평가 | 학술지 통합(기타) | |
2013-04-26 | 학술지명변경 | 한글명 : 정보과학회논문지 : 소프트웨어 및 응용</br>외국어명 : Journal of KIISE : Software and Applications | KCI등재 |
2011-01-01 | 평가 | 등재학술지 유지(등재유지) | KCI등재 |
2009-01-01 | 평가 | 등재학술지 유지(등재유지) | KCI등재 |
2008-10-17 | 학술지명변경 | 한글명 : 정보과학회논문지 : 소프트웨어 및 응용</br>외국어명 : Journal of KISS : Software and Applications | KCI등재 |
2007-01-01 | 평가 | 등재학술지 유지(등재유지) | KCI등재 |
2005-01-01 | 평가 | 등재학술지 유지(등재유지) | KCI등재 |
2002-01-01 | 평가 | 등재학술지 선정(등재후보2차) | KCI등재 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기음성서비스 신청
닫기음성서비스 신청 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)