KCI등재후보
다차원 데이터의 군집분석을 위한 차원축소 방법: 주성분분석 및 요인분석 비교 = A dimensional reduction method in cluster analysis for multidimensional data: principal component analysis and factor analysis comparison
저자
홍준호 ( Jun-ho Hong ) ; 오민지 ( Min-ji Oh ) ; 조용빈 ( Yong-been Cho ) ; 이경희 ( Kyung-hee Lee ) ; 조완섭 ( Wan-sup Cho )
발행기관
학술지명
권호사항
발행연도
2020
작성언어
-주제어
등재정보
KCI등재후보
자료형태
학술저널
수록면
135-143(9쪽)
KCI 피인용횟수
0
제공처
본 논문은 농식품 소비자패널 데이터에서 소비자의 유형을 나눌 때에 변수간 연관성이 많은 장바구니 분석에서 전처리 방법과 차원축소의 방법을 제안한다. 군집분석은 다변량 자료에서 관측 개체를 몇 개의 군집으로 나눌 때 널리 사용되는 분석기법이다. 하지만 여러 개의 변수가 연관성을 가진 경우에는 차원축소를 통한 군집분석이 더 효과적일 수 있다. 본 논문은 1,987 가구를 대상으로 조사한 식품소비 데이터를 K-means 방법을 사용하여 군집화하였으며, 군집을 나누기 위해 17개의 변수를 선정하였고, 17개의 다중공선성 문제와 군집을 나누기 위한 차원축소의 방법 중 주성분 분석과 요인분석을 비교하였다. 본 연구에서는 주성분분석과 요인분석 모두 2개의 차원으로 축소하였으며 주성분분석에서는 3개의 군집으로 나뉘었지만 분석하고자 하였던 소비 패턴에 대한 군집의 특성이 잘 나타나지 않았으며 요인분석에서는 분석가가 보고자 하는 소비 패턴의 특징이 잘 나타났다.
더보기This paper proposes a pre-processing method and a dimensional reduction method in the analysis of shopping carts where there are many correlations between variables when dividing the types of consumers in the agri-food consumer panel data. Cluster analysis is a widely used method for dividing observational objects into several clusters in multivariate data. However, cluster analysis through dimensional reduction may be more effective when several variables are related. In this paper, the food consumption data surveyed of 1,987 households was clustered using the K-means method, and 17 variables were re-selected to divide it into the clusters. Principal component analysis and factor analysis were compared as the solution for multicollinearity problems and as the way to reduce dimensions for clustering. In this study, both principal component analysis and factor analysis reduced the dataset into two dimensions. Although the principal component analysis divided the dataset into three clusters, it did not seem that the difference among the characteristics of the cluster appeared well. However, the characteristics of the clusters in the consumption pattern were well distinguished under the factor analysis method.
더보기분석정보
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 계속평가 신청대상 (계속평가) | |
2021-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
2020-12-01 | 평가 | 등재후보 탈락 (계속평가) | |
2018-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | KCI후보 |
서지정보 내보내기(Export)
닫기소장기관 정보
닫기권호소장정보
닫기오류접수
닫기오류 접수 확인
닫기이용약관
닫기학술연구정보서비스 이용약관 (2017년 1월 1일 ~ 현재 적용)
학술연구정보서비스(이하 RISS)는 정보주체의 자유와 권리 보호를 위해 「개인정보 보호법」 및 관계 법령이 정한 바를 준수하여, 적법하게 개인정보를 처리하고 안전하게 관리하고 있습니다. 이에 「개인정보 보호법」 제30조에 따라 정보주체에게 개인정보 처리에 관한 절차 및 기준을 안내하고, 이와 관련한 고충을 신속하고 원활하게 처리할 수 있도록 하기 위하여 다음과 같이 개인정보 처리방침을 수립·공개합니다.
주요 개인정보 처리 표시(라벨링)
목 차
3년
또는 회원탈퇴시까지5년
(「전자상거래 등에서의 소비자보호에 관한3년
(「전자상거래 등에서의 소비자보호에 관한2년
이상(개인정보보호위원회 : 개인정보의 안전성 확보조치 기준)개인정보파일의 명칭 | 운영근거 / 처리목적 | 개인정보파일에 기록되는 개인정보의 항목 | 보유기간 | |
---|---|---|---|---|
학술연구정보서비스 이용자 가입정보 파일 | 한국교육학술정보원법 | 필수 | ID, 비밀번호, 성명, 생년월일, 신분(직업구분), 이메일, 소속분야, 웹진메일 수신동의 여부 | 3년 또는 탈퇴시 |
선택 | 소속기관명, 소속도서관명, 학과/부서명, 학번/직원번호, 휴대전화, 주소 |
구분 | 담당자 | 연락처 |
---|---|---|
KERIS 개인정보 보호책임자 | 정보보호본부 김태우 | - 이메일 : lsy@keris.or.kr - 전화번호 : 053-714-0439 - 팩스번호 : 053-714-0195 |
KERIS 개인정보 보호담당자 | 개인정보보호부 이상엽 | |
RISS 개인정보 보호책임자 | 대학학술본부 장금연 | - 이메일 : giltizen@keris.or.kr - 전화번호 : 053-714-0149 - 팩스번호 : 053-714-0194 |
RISS 개인정보 보호담당자 | 학술진흥부 길원진 |
자동로그아웃 안내
닫기인증오류 안내
닫기귀하께서는 휴면계정 전환 후 1년동안 회원정보 수집 및 이용에 대한
재동의를 하지 않으신 관계로 개인정보가 삭제되었습니다.
(참조 : RISS 이용약관 및 개인정보처리방침)
신규회원으로 가입하여 이용 부탁 드리며, 추가 문의는 고객센터로 연락 바랍니다.
- 기존 아이디 재사용 불가
휴면계정 안내
RISS는 [표준개인정보 보호지침]에 따라 2년을 주기로 개인정보 수집·이용에 관하여 (재)동의를 받고 있으며, (재)동의를 하지 않을 경우, 휴면계정으로 전환됩니다.
(※ 휴면계정은 원문이용 및 복사/대출 서비스를 이용할 수 없습니다.)
휴면계정으로 전환된 후 1년간 회원정보 수집·이용에 대한 재동의를 하지 않을 경우, RISS에서 자동탈퇴 및 개인정보가 삭제처리 됩니다.
고객센터 1599-3122
ARS번호+1번(회원가입 및 정보수정)